DTS Data Services SDK Version 1.0

Demand Technology Software’s Data Services SDK
Version 1.0
August 28, 2012

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disseminated without express written consent.

Page i

DTS Data Services SDK Version 1.0

Lo OVBIVIBW ..ttt bbbttt b bbbt b bt e et et e b et be b ene s 1
2. ATCRITECIUIE. ... sttt sae e teeneenre et 1
0 I B =T o 1= o (=] o 1= SRS SPRS 1
3. Performance Data SEIVICE......c.ccviuiiieieiie ettt sttt sreeae s 1
3.1, Valid SQL IdeNtifiers......ccviiii ettt sree b 3
3.2, UNIQUe INStANCE NAMES ...ttt 3
3.3, Performance Data FIltersccooviiiiiiiiiiiieee s 4

5. SAMPIE COUE ... 5
5.1. Building a Ul APPHCALION.......cceciiiieiieic e 5
5.1.1. Making the Data REQUEST..........cceiiiiiieieieese e 6
5.1.2. EXamining the datacccceiieiiiiiiiiece e e 8
5.1.3. Graphing the RESUILcooiiiiiiee e 10

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disseminated without express written consent.

Page ii

1. Overview

This document describes the Demand Technology Software (DTS) Data Services SDK.
The SDK will allow 3™ Party applications to retrieve historical performance data from
the Microsoft SQL Server-based Performance Sentry Performance Database (PDB) and
utilize the data in .NET applications.

2. Architecture

The SDK consists of the DTS.Common.DataAccess.Services assembly which
implements the PerformanceDataService class using C# in .NET 4.0. This class
connects to the PDB to retrieve the requested performance data either by using LINQ or
dynamic SQL queries. The class includes methods to get machine, performance object,
and performance counter information. Connection management follows the .NET
connection management paradigm for the SQL Connection class.

2.1. Dependencies

The data service assembly is built with .NET 4.0 and the following dependencies on
related DTS common services.

Assembly Name Description

DTS.Common.Collections DTS common collection classes used for data
requests.

DTS.Common.PerformanceData Contains classes that define the Windows

performance data, including PerformanceObject
and PerformanceCounter. Also contains the utility
function SQLIdentiferTransformer.

DTS.Common.Utils DTS utility classes to support
DTS.Common.Performance Data

These additional .dlls are included in the SDK.

3. Performance Data Service

The bulk of the work to access performance data stored in the PDB is performed by
instantiating the PerformanceDataService class. The public methods for the
PerformanceDataService class are described below.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 1

Method

Description

public PerformanceDataService(string connectionString)

The database connection string is specified in
the constructor of the class and then connection
management is performed by .NET in each
subsequent method call.

public List<DTS.Common.PerformanceData.PerformanceData>
GetPerformanceData(PerformanceData.PerformanceDataRequest
DataRequest)

This function passes a DataRequest object
which defines the data to be returned in a
List<PerformanceData>

public List<Machine> GetAllMachines()

Returns all machines that have data in the
PDB.

public PerformanceCounters GetCounters(string machineName,
PerformanceObject Object)

This method returns counters that have data for
a particular object by specifying the machine
name either as a string or a class generated
automatically from the PDB schema using
dbml.

public PerformanceCounters GetCounters(Machine machine,
PerformanceObject Object)

Same as above method but machine name is
specified using a class generated from the PDB
schema.

public PerformanceObjects GetCollectionObjects(Machine
machine)

Returns the collected objects for a particular
machine.

Performance data is retrieved by passing a PerformanceDataRequest object to the
GetPerformanceData method. The PerformanceDataRequest object requires a start
time, end time, and a list of counters to be returned over the requested time period. The

objects will contain the desired performance counters.

PerformanceDataRequest

-ObjectsRequested : PerformanceObjects
-InstanceFilters : PerformanceObjectinstanceFilters

-PerformanceCounterTopXFilters : PerformanceCounterTopXFilters
-JoinToFilters : JoinToFilters

-StartTime : DateTime

-Endtime : DateTime

-PerformanceCounterThresholdTestFilters : PerformanceCounterThresholdTestFilters

The PerformanceData class contains PerformanceObject and PerformanceCounter
classes from the DTS.Common.PerformanceData assembly to indicate the datato be
retrieved. A PerformanceObiject class contains a Counters property which is defined as

an ObservableCollection of PerformanceCounters.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 2

Object Browser 08X

Browse: | My Solution '| o | - = | 5 | = =
| <Search> -| B =
4 .3 DT5.Common.PerformanceData - v Equals(object)
4 {} DTS.Common.PerformanceData w GetHashCode()
4 “i% PerformanceCounter % PerformanceObject(string)
> [Base Types % PerformanceCbject(DTS.Common.PerformanceData.PerformanceObject)
> “i% PerformanceCounterComparer % PerformanceCbject()
> “i% PerformanceCounters % ShouldSerializelsInstanced()
> “i% PerformanceCounterThresholdTestFilter % ShouldSerialize5QLCompliantMame()
> “§ PerformanceCounterThresholdTestFilters % ToString()
> =¥ PerformanceCounterThresholdTestType ﬁ]
> “i% PerformanceCounterTopXFilter 5 HelpText
> “i% PerformanceCounterTopXFilters E 5 Islnstanced
> “i% PerformanceData = Mame
> “i% PerformanceDataRequest ' sQLCompliantMame

> “i% PerformanceDataSample

> “i% PerformanceDataSamples

> “i% PerformanceObject

> “i% PerformanceObjectData

> “I% PerformanceObjectinstanceFilter
> “1% PerformanceObjectnstanceFilters

» “i§ PerformanceObjectloinToFilter public DTS.Common.PerformanceData.PerformanceCounters Counters { set; get; }
» “1§ PerformanceObjectloinToFilters Member of DTS.Common.PerformanceData.PerformanceObject

> “i% PerformanceObjects

> “I% PerformanceObjectSample

> “1% PerformanceObjectSamples

> “i% SQLUdentifierTransformer E

3.1. Valid SQL Identifiers

To deal with the Windows Performance object names and counter names that can contain
invalid SQL characters, the PDB transforms the counter names into valid SQL identifiers.
In the database, the names of counters that identify the database Table data columns are
SQL-compliant.

To retrieve performance data and return a counter name that maps to the counter name
displayed in the Windows Performance Monitor application, a reverse transformation is
performed on the SQL column name by the PerformanceDataService. When submitting
requests for performance counter data, you use the original object or counter name, which
is transformed into a corresponding SQL-compliant column name.

For information purposes, the DTS.Common.PerformanceData classes also expose a
public string Property called the SQLCompliantName, which is generated dynamically
at run time from the object or counter name.

3.2. Unique Instance Names

The Windows Performance counters provide for an Instance name to identify counters
associated with a specific processor, disk, etc., using a unique identifier. Following
object-oriented terminology, this unique identifier is referred to as the Instance name.

The Instance names for the Process performance object are derived from the name of the
process executable file name, i.e., sqlservr for the sqlservr.exe process. Windows allows
multiple processes with the same executable name to run concurrently, so Instance name

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 3

is not sufficient to identify an instance of the Process performance object uniquely. The
Process ID (or PID) is guaranteed to be unique at any one point in time, so the Process ID
is used to distinguish among processes running the same executable.

To generate unique instance names for Process objects, the value of the 1D Process
counter is appended to the Instance name (delimited by a period: as in sqlsrvr.1113). If
the user fails to request the ID Process counter for the Process object, it is added to the
request automaticaly by the data service.

3.3. Performance Data Filters

There are several types of filters than can be specified in the data request to reduce the
amount of data returned to the caller. Requests for data for Performance Objects with

multiple instances, such as requests for Process level data, can return large volumes of
raw performance data. Filtering reduces the amount of data that the PDB query returns.

Four types of filters are supported:

Filter Description

InstanceFilter Instance filters can be specified to restrict the data being returned
to specific named instances of the objects requested.

JoinToFilter This allows the request to return an instance of an object where
the JOIN TO field matches the instances of another object, by
time stamp.

The JoinTo Filter is most frequently used to JOIN to the Process
object to gather process-level processor and memory usage data.
The JOIN operation is frequently performed on the Process ID
field, serving as a foreign key.

For example, the Performance Sentry collection agent adds an 1D
Process counter to each instance of the SQL Server performance
objects that it gathers. Similarly, many of the .NET performance
counters, such as .NET CLR Memory, contains the Process ID
counter.

PerformanceCounterThresholdTest | Counter test filters can also be specified to return only instances
of objects for which the specified counter meets the test.

PerformanceCounterTopXFilter This return the top X samples of the counter for a particular
object.

Multiple filters as well as multiple instances of each single filter can be specified, as
required.

Use of the filtering capability is illustrated in the sample described in the following
section.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 4

4. Sample Code

The SDK provides sample code for a generic PDB Query desktop application that
illustrates the use of the PDB Data Access services. The sample program is written in C#
using Visual Studio 2010 and was built using the .NET Framework 4.0.

Project Name Description APIs Exercised Language
GetCollectionObjects
PDBQueryClient | Sample client Ul GetPerformanceCounters | C#
application for GetPerformanceData
performance data retrieval.

4.1. Building a Ul Application

The SDK includes a sample application called PDBQueryClient to demonstrate how a
custom data retrieval application might work. To retrieve historical data for a particular
machine, the user can browse the network or type in a machine name. You specify the
PDB ConnectionString setting to use in the PDBQueryClient.exe.config settings file:

<applicationSettings>
<DTS.Common.DataAccess.Services.Example.Properties.Settings>
<setting name="ConnectionString" serializeAs="String">
<value>Data Source=machine\database;Initial
Catalog=PDB;Integrated Security=SSPI;</value>
</setting>
</DTS.Common.DataAccess.Services.Example.Properties.Settings>
</applicationSettings>

Once a machine is selected by the user, the collected objects on the machine are retrieved
by calling the GetCollectedObjects method. Once the object is the selected, the program
retrieves the available counters for the object on the selected machine by calling the
GetCounters method. When a counter name is selected, a data request for that counter is
created for the selected duration. The data request is then passed to the
GetPerformanceData method on the PerformanceDataServices class. The results are
shown on the chart and values tab. The sample also allows the user to test the four filter
types, instance, counter threshold, top X, and JoinTo. A sample screen showing results
after data is requested is shown below:

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 5

~lolx
PDB Query Client

Machine N X SOLSERVER To retrieve data for a particular counter on a specific machine. first enter or selectthe machine to retrieve the collected objects. Once the
ERINDIENTE _| obijects are retrieved. click on the object to getthe counters. Click on the counter to retrieve data over the specified time period.

Collected Objects Object Counters [Filiers

Cache % Privileged Time .

IPv4 o e 5 l_ Use Instance Filter M

IRAOQ‘CEID'SK [~ Use Counter Filter > - |

emary

Network Interface ™ Include only TOP 5 =] Instances based on countervalus

Paging File Cach

PhysicalDisk [Filter ID Process on I ache LI
10 Data Bytes sec —Duration Chart

10 Data Operations sec
10 Other Bytes sec

Start Time: |11/13/2006 at 08:32 AM > Type: |StackedCo
10 Other Operations sec LI
End Time: [11/13/2006 at 09:02 AM ~ Use Current
Refresh

Chart |Va|ues|

Process(% Processor Time on SQLSERVER

From 11/13/2006 8:32:12 AM to 11/13/2006 9:02:12 AM

% Processor Time

I wmiprvse.2680 I wmiprvse.3976 HEM sqlservr. 2663 kntcma.1260 WM svchost.612 M Isass. 1628 services. 1608 M System.4
N Rtvscan.2876 twgescli.3168

11/13/2006 8:32:00 AM

4.1.1. Making the Data Request

In order to request data, a PerformanceDataRequest object is created. The data request
has an object list for which historical data is to be retrieved. These objects are instantiated
and assigned a unique Instance name. Counters are assigned to the object for data that
the user wants to retrieve. It is important to only request data which will be used in order
to minimize bandwidth used for the request.

Note: Any object, counter, or instance names specified in the data request object are
case-sensitive.

PerformanceDataRequest request = new PerformanceDataRequest();

// Set up the performance object

PerformanceObject po = new PerformanceObject(Object.Name);
PerformanceCounter counter = new PerformanceCounter(CounterName);
po.Counters.Add(counter);

If a list counters names of a particular object are needed, then the client can call the
function GetCounters for a particular object and machine. This will return a list of the
counters being collected for the object. This list can then be used to build the list of
counters for the request.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 6

// Create the performance object request list
request.ObjectsRequested = new PerformanceObjects();
request.ObjectsRequested.Add(po);

request.Machines = new string[] { tbMachineName.Text };
request.StartTime = this.StartTime.Value;
request.EndTime = this.EndTime.Value;

The sample code also demonstrates how to set up the optional filters for the request.
Object instance filters can reduce the amount of data returned by restricting the query to
specific instances of an object. In the example below, the Process object data is only
returned for the instances specified.

PerformanceObjectInstanceFilter instanceFilter = new
PerformanceObjectInstanceFilter();

instanceFilter.0ObjectName = this.ObjectName;
instanceFilter.InstanceNames = new string[lbInstances.Items.Count];
for (int i = @; i < lbInstances.Items.Count; i++)
instanceFilter.InstanceNames[i] = lbInstances.Items[i].ToString();

The user may not want to retrieve all of the available data for the object if the time
interval is large. To further restrict the amount of data being returned, a counter filter
exists to filter on a specific value of a counter in an object. The threshold can be a test
whether the counter value is less than, less than or equal, greater than, greater than or
equal, or just equal to a value.

An alternative to the threshold test counter filter is the TopX counter filter. This filter
allows only the top X values to be returned for the counter over the specified time period.

Lastly, the JoinTo filter allows the developer to have instances of a particular object
returned if one of the object’s counters has the same value as one of another object’s
counters for a specific timestamp. This functionality is used when requesting process
object data for a SQL Server object where the unique ID Process field is also available.

Once the request object is created, the data service can be opened using the specified
SQL Connection string. For the sample application, the SQL Connection string is stored
in the program’s settings.

Settings.settings > [gs[elilEave Syingely) e PerformanceDataSample.cs PerformanceCounter.cs PerformanceDataService.cs

Synchronize ijl Load Web Settings ';] View Code | Access Modffier: |Internal -

Application settings allow you to store and retrieve property settings and other information for your application dynamically. For example, the |
Learn more about application settings...

Name Type Scope Value
» Connection... |string j Application j Data Source=DEV\NTSMFPDB;Initial Catalog=PDB;Integrated Security=5SPI;

: T

The connection string is retrieved from the application settings as follows:

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 7

string connectionString = Properties.Settings.Default.ConnectionString;

If a user name or password is needed, the connection string settings are User ID and
Password. In the sample application, these are not used. For the sample program, the
settings are stored in the PDBQueryClient.exe.config xml file.

Note: In a production environment, encryption should be when storing the Connection
string information to protect access to the PDB.

Once the connection string is retrieved, then the data service can be instantiated.

service = new
DTS.Common.DataAccess.Services.PerformanceDataService(connectionString);

4.1.2. Examining the data

The data is returned from the GetPerformanceData call in a generic .NET collection,
namely a List of PerformanceData objects.

List<DTS.Common.PerformanceData.PerformanceData> result =

service.GetPerformanceData(request);

One PerformanceData object is returned for each one of the machines in the data
request.

PerformanceData

-m_ObjectData : PerformanceObjectData
-m_StartTime : DateTime Notes
—-m_EndTime : DateTime 1. m_ObjectNames has type string[] (names of object)

Contains| [M-ObjectNames : string 2. m_ObjectData has type PerformanceObjectData[][] (object data by name)
-m_MachineName : string

PerformanceObjectData

-m_InstanceNames : string
-m_UniquelnstanceNames : string
-m_CollectionTime : DateTime
-m_Values : double

Notes
1. m_InstanceNames has type string[] (names of instances)
2. m_UniquelnstanceNames has type string[] (unique names of instances)
3. m_Values has type double?[][] (values of counters by instance)
Note: These values can be null to represent uncollected counters)

The PerformanceData class contains an ObjectNames field which is an array of strings
with the names of the objects to fulfill for the request. If the first object request is
‘Process’, then ObjectNames[0] will be ‘Process’ The ObjectData field is the array
(potentially, a sparse array) of PerformanceObjectData instantiations for each object. If

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 8

the first object requested is ‘Process’, then the PerformanceObjectData for the process
will be in the array in the location of ObjectData[0].

The PerformanceObjectData class is utilized to hold the counter values of each instance
returned for a particular requested object at a particular collection time. The names of the
instances returned are in the InstanceNames[] string array. The name of the first
instance of an object at a particular collection time indexed by the InstanceNames[0]
value. Uninstanced objects will have a blank instance name.

The actual counter values are in a sparse array called VValues. The counter values are
indexed in the same order as they are requested. For the first instance of a particular
object, the Values would be in the Values[0][0] array.

Note: Counter values must be checked for null values since uncollected counter values
are represented by null instead of 0.0 or some distinct numerical value. See the
highlighted text in the example below.

The following code constructs a message containing the object instances and values:

// Data is returned in the ObjectData array for each object name
for (int i = @; i < data.ObjectNames.Length; i++)

{

// Instances of the object are stored in the ObjectData array sorted by Time
for (int instance=0; instance < data.ObjectData[i].Length; instance++)

{
// Get the sample for the instance of the ith object

PerformanceObjectData sample = data.ObjectData[i][instance];

string message = data.ObjectNames[i] + "," +
sample.CollectionTime.ToString();

// Each object has a number of instances
for (int j=0; j < sample.InstanceNames.Length; j++)

{

message = message + "\r\n" + sample.InstanceNames[j];

// Each instance has a number of values ordered by the request order
for (int k = @; k < sample.Values[j].Length; k++)

{

message = message + ",";

if (sample.Values[j][k] != null)
message += sample.Values[j][k];

}

In a graphical analysis program, it is easier to deal with a list of
PerformanceDataSample objects instead of the packed data structures that are used to
communicate directly with the PDB. The SDK includes a ToSamples method in the
PerformanceData object to do this transformation. The method will transform the
values for an object and counter in an array of PerformanceSample objects. Each
sample contains the value of the particular object and counter for one collection interval.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 9

public void ToSamples(PerformanceObject po,
string Counter,
PerformnaceDataSamples dataSamples)

PerformanceDataSample

-ObjectName : string
-CounterName : string
-UniquelnstanceName : string
-InstanceName : string
-CollectionTime : DateTime
-DValue : double

-Value : string

Once the data is packaged into the PerformanceDataSamples object, the data samples
can be accessed by an application which binds the data from one of the .NET collection
classes to a data-bound reporting control.

4.1.3. Graphing the Result

The PDBQueryClient application uses the .NET Chart control to display the performance
data. The first step is to request the data and transform the results into the
PerformanceDataSamples object using the ToSamples method.

// List of performance data on each machine requested
List<DTS.Common.PerformanceData.PerformanceData> result =
service.GetPerformanceData(request);
if ((result != null) && (result.Count > 0))
{
// Transform the data into performance data samples for the requested
object and counter
result[@].ToSamples(po,
Counter.Name,
dataSamples);

Once the data is transformed to the PerformanceDataSamples object, it can be added to
the graphing control by iterating over the collection and adding the information from
each PerformanceDataSample individually to the data chart series for that instance of
the object.

// There is one data sample for each instance at a particular time
for (int i = @; i < dataSamples.Count; i++)
{

PerformanceDataSample sample = dataSamples[i] as PerformanceDataSample;

// Add one series to the chart for each instance of the object requested
Series s = null;

// use 'uninstanced' for the instance name
string InstanceName = "";

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 10

if (sample.UniqueInstanceName.Length == 0)
InstanceName = "Uninstanced";

else
InstanceName = sample.UniqueInstanceName;

s = this.DataChart.Series.FindByName(InstanceName);
if (s == null)

{
s = new Series(InstanceName);
s.XValueType = ChartValueType.DateTime;
this.DataChart.Series.Add(s);

}

// Add the point CollectionTime,Value
if ((s != null) && (s.Points != null))

{
int iAdded = s.Points.AddXY(sample.CollectionTime, sample.DValue);
if (iAdded >= 9)
{
DataPoint dp = s.Points[iAdded];
dp["TTlabel"] = sample.CollectionTime.ToShortTimeString();
}
}

}

This document and sample code explains how to retrieve data from the Performance
Database (PDB) using the DTS Data Services SDK. It demonstrates how to prepare a
data request, examine the data, and graphing the end result.

Feedback or questions can be sent to support@demandtech.com

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

Page 11

