
DTS Data Services SDK Version 1.0

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disseminated without express written consent.

 Page i

Demand Technology Software’s Data Services SDK

Version 1.0

August 28, 2012

DTS Data Services SDK Version 1.0

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disseminated without express written consent.

 Page ii

1. Overview ... 1

2. Architecture ... 1
2.1. Dependencies .. 1

3. Performance Data Service ... 1

3.1. Valid SQL Identifiers .. 3

3.2. Unique Instance Names .. 3

3.3. Performance Data Filters .. 4
5. Sample Code ... 5

5.1. Building a UI Application ... 5
5.1.1. Making the Data Request .. 6

5.1.2. Examining the data ... 8
5.1.3. Graphing the Result .. 10

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 1

1. Overview

This document describes the Demand Technology Software (DTS) Data Services SDK.

The SDK will allow 3
rd

 Party applications to retrieve historical performance data from

the Microsoft SQL Server-based Performance Sentry Performance Database (PDB) and

utilize the data in .NET applications.

2. Architecture

The SDK consists of the DTS.Common.DataAccess.Services assembly which

implements the PerformanceDataService class using C# in .NET 4.0. This class

connects to the PDB to retrieve the requested performance data either by using LINQ or

dynamic SQL queries. The class includes methods to get machine, performance object,

and performance counter information. Connection management follows the .NET

connection management paradigm for the SQLConnection class.

2.1. Dependencies

The data service assembly is built with .NET 4.0 and the following dependencies on

related DTS common services.

Assembly Name Description

DTS.Common.Collections DTS common collection classes used for data

requests.

DTS.Common.PerformanceData Contains classes that define the Windows

performance data, including PerformanceObject

and PerformanceCounter. Also contains the utility

function SQLIdentiferTransformer.

DTS.Common.Utils DTS utility classes to support

DTS.Common.Performance Data

These additional .dlls are included in the SDK.

3. Performance Data Service

The bulk of the work to access performance data stored in the PDB is performed by

instantiating the PerformanceDataService class. The public methods for the

PerformanceDataService class are described below.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 2

Method Description
public PerformanceDataService(string connectionString)

The database connection string is specified in

the constructor of the class and then connection

management is performed by .NET in each

subsequent method call.

public List<DTS.Common.PerformanceData.PerformanceData>
GetPerformanceData(PerformanceData.PerformanceDataRequest
DataRequest)

This function passes a DataRequest object

which defines the data to be returned in a

List<PerformanceData>

public List<Machine> GetAllMachines() Returns all machines that have data in the

PDB.

public PerformanceCounters GetCounters(string machineName,
PerformanceObject Object)

This method returns counters that have data for

a particular object by specifying the machine

name either as a string or a class generated

automatically from the PDB schema using

dbml.

public PerformanceCounters GetCounters(Machine machine,
PerformanceObject Object)

Same as above method but machine name is

specified using a class generated from the PDB

schema.

public PerformanceObjects GetCollectionObjects(Machine
machine)

Returns the collected objects for a particular

machine.

Performance data is retrieved by passing a PerformanceDataRequest object to the

GetPerformanceData method. The PerformanceDataRequest object requires a start

time, end time, and a list of counters to be returned over the requested time period. The

objects will contain the desired performance counters.

-ObjectsRequested : PerformanceObjects

-InstanceFilters : PerformanceObjectInstanceFilters

-PerformanceCounterThresholdTestFilters : PerformanceCounterThresholdTestFilters

-PerformanceCounterTopXFilters : PerformanceCounterTopXFilters

-JoinToFilters : JoinToFilters

-StartTime : DateTime

-Endtime : DateTime

PerformanceDataRequest

The PerformanceData class contains PerformanceObject and PerformanceCounter

classes from the DTS.Common.PerformanceData assembly to indicate the data to be

retrieved. A PerformanceObject class contains a Counters property which is defined as

an ObservableCollection of PerformanceCounters.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 3

3.1. Valid SQL Identifiers

To deal with the Windows Performance object names and counter names that can contain

invalid SQL characters, the PDB transforms the counter names into valid SQL identifiers.

In the database, the names of counters that identify the database Table data columns are

SQL-compliant.

To retrieve performance data and return a counter name that maps to the counter name

displayed in the Windows Performance Monitor application, a reverse transformation is

performed on the SQL column name by the PerformanceDataService. When submitting

requests for performance counter data, you use the original object or counter name, which

is transformed into a corresponding SQL-compliant column name.

For information purposes, the DTS.Common.PerformanceData classes also expose a

public string Property called the SQLCompliantName, which is generated dynamically

at run time from the object or counter name.

3.2. Unique Instance Names

The Windows Performance counters provide for an Instance name to identify counters

associated with a specific processor, disk, etc., using a unique identifier. Following

object-oriented terminology, this unique identifier is referred to as the Instance name.

The Instance names for the Process performance object are derived from the name of the

process executable file name, i.e., sqlservr for the sqlservr.exe process. Windows allows

multiple processes with the same executable name to run concurrently, so Instance name

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 4

is not sufficient to identify an instance of the Process performance object uniquely. The

Process ID (or PID) is guaranteed to be unique at any one point in time, so the Process ID

is used to distinguish among processes running the same executable.

To generate unique instance names for Process objects, the value of the ID Process

counter is appended to the Instance name (delimited by a period: as in sqlsrvr.1113). If

the user fails to request the ID Process counter for the Process object, it is added to the

request automaticaly by the data service.

3.3. Performance Data Filters

There are several types of filters than can be specified in the data request to reduce the

amount of data returned to the caller. Requests for data for Performance Objects with

multiple instances, such as requests for Process level data, can return large volumes of

raw performance data. Filtering reduces the amount of data that the PDB query returns.

Four types of filters are supported:

Filter Description

InstanceFilter Instance filters can be specified to restrict the data being returned

to specific named instances of the objects requested.

JoinToFilter This allows the request to return an instance of an object where

the JOIN TO field matches the instances of another object, by

time stamp.

The JoinTo Filter is most frequently used to JOIN to the Process

object to gather process-level processor and memory usage data.

The JOIN operation is frequently performed on the Process ID

field, serving as a foreign key.

For example, the Performance Sentry collection agent adds an ID

Process counter to each instance of the SQL Server performance

objects that it gathers. Similarly, many of the .NET performance

counters, such as .NET CLR Memory, contains the Process ID

counter.

PerformanceCounterThresholdTest Counter test filters can also be specified to return only instances

of objects for which the specified counter meets the test.

PerformanceCounterTopXFilter This return the top X samples of the counter for a particular

object.

Multiple filters as well as multiple instances of each single filter can be specified, as

required.

Use of the filtering capability is illustrated in the sample described in the following

section.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 5

4. Sample Code

The SDK provides sample code for a generic PDB Query desktop application that

illustrates the use of the PDB Data Access services. The sample program is written in C#

using Visual Studio 2010 and was built using the .NET Framework 4.0.

Project Name Description APIs Exercised Language

PDBQueryClient Sample client UI

application for

performance data retrieval.

GetCollectionObjects

GetPerformanceCounters

GetPerformanceData

C#

4.1. Building a UI Application

The SDK includes a sample application called PDBQueryClient to demonstrate how a

custom data retrieval application might work. To retrieve historical data for a particular

machine, the user can browse the network or type in a machine name. You specify the

PDB ConnectionString setting to use in the PDBQueryClient.exe.config settings file:

 <applicationSettings>
 <DTS.Common.DataAccess.Services.Example.Properties.Settings>
 <setting name="ConnectionString" serializeAs="String">
 <value>Data Source=machine\database;Initial
Catalog=PDB;Integrated Security=SSPI;</value>
 </setting>
 </DTS.Common.DataAccess.Services.Example.Properties.Settings>
 </applicationSettings>

Once a machine is selected by the user, the collected objects on the machine are retrieved

by calling the GetCollectedObjects method. Once the object is the selected, the program

retrieves the available counters for the object on the selected machine by calling the

GetCounters method. When a counter name is selected, a data request for that counter is

created for the selected duration. The data request is then passed to the

GetPerformanceData method on the PerformanceDataServices class. The results are

shown on the chart and values tab. The sample also allows the user to test the four filter

types, instance, counter threshold, top X, and JoinTo. A sample screen showing results

after data is requested is shown below:

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 6

4.1.1. Making the Data Request

In order to request data, a PerformanceDataRequest object is created. The data request

has an object list for which historical data is to be retrieved. These objects are instantiated

and assigned a unique Instance name. Counters are assigned to the object for data that

the user wants to retrieve. It is important to only request data which will be used in order

to minimize bandwidth used for the request.

Note: Any object, counter, or instance names specified in the data request object are

case-sensitive.

PerformanceDataRequest request = new PerformanceDataRequest();

 // Set up the performance object
 PerformanceObject po = new PerformanceObject(Object.Name);
 PerformanceCounter counter = new PerformanceCounter(CounterName);
 po.Counters.Add(counter);

If a list counters names of a particular object are needed, then the client can call the

function GetCounters for a particular object and machine. This will return a list of the

counters being collected for the object. This list can then be used to build the list of

counters for the request.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 7

 // Create the performance object request list
 request.ObjectsRequested = new PerformanceObjects();
 request.ObjectsRequested.Add(po);
 request.Machines = new string[] { tbMachineName.Text };
 request.StartTime = this.StartTime.Value;
 request.EndTime = this.EndTime.Value;

The sample code also demonstrates how to set up the optional filters for the request.

Object instance filters can reduce the amount of data returned by restricting the query to

specific instances of an object. In the example below, the Process object data is only

returned for the instances specified.

PerformanceObjectInstanceFilter instanceFilter = new
PerformanceObjectInstanceFilter();

instanceFilter.ObjectName = this.ObjectName;
instanceFilter.InstanceNames = new string[lbInstances.Items.Count];
for (int i = 0; i < lbInstances.Items.Count; i++)
instanceFilter.InstanceNames[i] = lbInstances.Items[i].ToString();

The user may not want to retrieve all of the available data for the object if the time

interval is large. To further restrict the amount of data being returned, a counter filter

exists to filter on a specific value of a counter in an object. The threshold can be a test

whether the counter value is less than, less than or equal, greater than, greater than or

equal, or just equal to a value.

An alternative to the threshold test counter filter is the TopX counter filter. This filter

allows only the top X values to be returned for the counter over the specified time period.

Lastly, the JoinTo filter allows the developer to have instances of a particular object

returned if one of the object’s counters has the same value as one of another object’s

counters for a specific timestamp. This functionality is used when requesting process

object data for a SQL Server object where the unique ID Process field is also available.

Once the request object is created, the data service can be opened using the specified

SQL Connection string. For the sample application, the SQL Connection string is stored

in the program’s settings.

The connection string is retrieved from the application settings as follows:

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 8

string connectionString = Properties.Settings.Default.ConnectionString;

If a user name or password is needed, the connection string settings are User ID and

Password. In the sample application, these are not used. For the sample program, the

settings are stored in the PDBQueryClient.exe.config xml file.

Note: In a production environment, encryption should be when storing the Connection

string information to protect access to the PDB.

Once the connection string is retrieved, then the data service can be instantiated.

 service = new
DTS.Common.DataAccess.Services.PerformanceDataService(connectionString);

4.1.2. Examining the data

The data is returned from the GetPerformanceData call in a generic .NET collection,

namely a List of PerformanceData objects.

List<DTS.Common.PerformanceData.PerformanceData> result =

service.GetPerformanceData(request);

One PerformanceData object is returned for each one of the machines in the data

request.

-m_ObjectData : PerformanceObjectData

-m_StartTime : DateTime

-m_EndTime : DateTime

-m_ObjectNames : string

-m_MachineName : string

PerformanceData

-m_InstanceNames : string

-m_UniqueInstanceNames : string

-m_CollectionTime : DateTime

-m_Values : double

PerformanceObjectData

Contains

Notes

1. m_ObjectNames has type string[] (names of object)

2. m_ObjectData has type PerformanceObjectData[][] (object data by name)

Notes

1. m_InstanceNames has type string[] (names of instances)

2. m_UniqueInstanceNames has type string[] (unique names of instances)

3. m_Values has type double?[][] (values of counters by instance)

 Note: These values can be null to represent uncollected counters)

The PerformanceData class contains an ObjectNames field which is an array of strings

with the names of the objects to fulfill for the request. If the first object request is

‘Process’, then ObjectNames[0] will be ‘Process’ The ObjectData field is the array

(potentially, a sparse array) of PerformanceObjectData instantiations for each object. If

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 9

the first object requested is ‘Process’, then the PerformanceObjectData for the process

will be in the array in the location of ObjectData[0].

The PerformanceObjectData class is utilized to hold the counter values of each instance

returned for a particular requested object at a particular collection time. The names of the

instances returned are in the InstanceNames[] string array. The name of the first

instance of an object at a particular collection time indexed by the InstanceNames[0]

value. Uninstanced objects will have a blank instance name.

The actual counter values are in a sparse array called Values. The counter values are

indexed in the same order as they are requested. For the first instance of a particular

object, the Values would be in the Values[0][0] array.

Note: Counter values must be checked for null values since uncollected counter values

are represented by null instead of 0.0 or some distinct numerical value. See the

highlighted text in the example below.

The following code constructs a message containing the object instances and values:

 // Data is returned in the ObjectData array for each object name
 for (int i = 0; i < data.ObjectNames.Length; i++)
 {
 // Instances of the object are stored in the ObjectData array sorted by Time
 for (int instance=0; instance < data.ObjectData[i].Length; instance++)
 {
 // Get the sample for the instance of the ith object
 PerformanceObjectData sample = data.ObjectData[i][instance];

string message = data.ObjectNames[i] + "," +
sample.CollectionTime.ToString();

 // Each object has a number of instances
 for (int j=0; j < sample.InstanceNames.Length; j++)
 {
 message = message + "\r\n" + sample.InstanceNames[j];
 // Each instance has a number of values ordered by the request order
 for (int k = 0; k < sample.Values[j].Length; k++)
 {
 message = message + ",";

 if (sample.Values[j][k] != null)
 message += sample.Values[j][k];
 }
 }
 }

In a graphical analysis program, it is easier to deal with a list of

PerformanceDataSample objects instead of the packed data structures that are used to

communicate directly with the PDB. The SDK includes a ToSamples method in the

PerformanceData object to do this transformation. The method will transform the

values for an object and counter in an array of PerformanceSample objects. Each

sample contains the value of the particular object and counter for one collection interval.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 10

 public void ToSamples(PerformanceObject po,
 string Counter,
 PerformnaceDataSamples dataSamples)

-ObjectName : string

-CounterName : string

-UniqueInstanceName : string

-InstanceName : string

-CollectionTime : DateTime

-DValue : double

-Value : string

PerformanceDataSample

Once the data is packaged into the PerformanceDataSamples object, the data samples

can be accessed by an application which binds the data from one of the .NET collection

classes to a data-bound reporting control.

4.1.3. Graphing the Result

The PDBQueryClient application uses the .NET Chart control to display the performance

data. The first step is to request the data and transform the results into the

PerformanceDataSamples object using the ToSamples method.

// List of performance data on each machine requested

 List<DTS.Common.PerformanceData.PerformanceData> result =
service.GetPerformanceData(request);
 if ((result != null) && (result.Count > 0))
 {
 // Transform the data into performance data samples for the requested
object and counter
 result[0].ToSamples(po,
 Counter.Name,

dataSamples);

….

Once the data is transformed to the PerformanceDataSamples object, it can be added to

the graphing control by iterating over the collection and adding the information from

each PerformanceDataSample individually to the data chart series for that instance of

the object.

// There is one data sample for each instance at a particular time
for (int i = 0; i < dataSamples.Count; i++)
{
 PerformanceDataSample sample = dataSamples[i] as PerformanceDataSample;

 // Add one series to the chart for each instance of the object requested
 Series s = null;

 // use 'uninstanced' for the instance name
 string InstanceName = "";

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 11

 if (sample.UniqueInstanceName.Length == 0)
 InstanceName = "Uninstanced";
 else
 InstanceName = sample.UniqueInstanceName;

 s = this.DataChart.Series.FindByName(InstanceName);
 if (s == null)
 {
 s = new Series(InstanceName);
 s.XValueType = ChartValueType.DateTime;
 this.DataChart.Series.Add(s);
 }

 ...

 // Add the point CollectionTime,Value
 if ((s != null) && (s.Points != null))
 {
 int iAdded = s.Points.AddXY(sample.CollectionTime, sample.DValue);
 if (iAdded >= 0)
 {
 DataPoint dp = s.Points[iAdded];
 dp["TTlabel"] = sample.CollectionTime.ToShortTimeString();
 }
 }

 …
}

This document and sample code explains how to retrieve data from the Performance

Database (PDB) using the DTS Data Services SDK. It demonstrates how to prepare a

data request, examine the data, and graphing the end result.

Feedback or questions can be sent to support@demandtech.com

