EXPLOITING WEB PUBLISHING TECHNOLOGY

TO ENHANCE PERFORMANCE REPORTING

Claude Aron

Chevron Information Technology Company

San Ramon, CA

email: jaro@chevron.com

The use of corporate intranets for publishing reports of all kinds is now a well-established standard. However, merely throwing a bunch of files onto a web server isn't a very satisfactory solution. This paper attempts to document some techniques we have employed at Chevron to present performance data in an efficient and easily navigable format that exploit the unique strengths of web publishing technology.

INTRODUCTION

The use of corporate intranets for publishing reports of all kinds is now a well-established standard. However, merely throwing a bunch of files onto a web server isn't a very satisfactory solution. This paper attempts to document some techniques we have employed at Chevron to present performance data in an efficient and easily navigable format that exploit the unique strengths of web publishing technology.

Moving from paper-based reporting to web-based reporting, even if you do nothing to exploit specific features of web publishing technology, does offer some significant advantages, such as:

1. It's timely - information can be made available virtually instantaneously from the time it is generated.

2. It's universally accessible - anyone who needs to get to the data can; there's no need to pre-define a specific group of report recipients.

3. It's dynamic - unlike paper reports, additions and corrections can be made at any time.

4. It provides interactive, random access to data - much more data than could practically fit into a paper report can be provided, with each user getting to select only the portion they want to view.

5. It's environment-friendly - recycling is great, but not using paper at all is even better!

This is all well and good, but if all you do is transfer your existing reports from paper to the web, you're missing out on some great opportunities (as well as running the risk that your reports will largely go unread and ignored). By leveraging some of the inherent strengths of web publishing technology, you can enhance the value of the data you present and create a more positive experience for the user.

The techniques presented in this paper don't require sophisticated web development tools or the services of a dedicated web application developer. All of the examples that follow are browser independent; they will run on current versions of Netscape and Microsoft browsers. The server scripts, though written using Active Server Pages (hereinafter referred to as ASP) running under Microsoft Internet Information Server, should be relatively easy to adapt to other server scripting technologies.

The techniques I will be presenting, roughly in order of increasing complexity, are:

1. Using frame-base pages for report retrieval

2. Exception reporting with embedded hyperlinks

3. Server health reporting using color-coded table cells

4. Server configuration reporting with query capability
ENVIRONMENT

A little background on our environment:

Our performance data repository (I'll refer to it as PDR from here on in) is SAS IT Service Vision running on an HP Unix K430 server with 4 processors and 768 MB of memory. Our NT data collector is NTSMF (Demand Technology) and our Unix data collector is Measureware (Hewlett-Packard).

We're currently monitoring about 400 NT servers that we've divided into the following groups (numbers in parenthesis are the number of servers in each group):

File servers (54)

Print servers (46)

Domain Control servers (61)

SMS servers (41)

Exchange servers (80)

Shared Application servers (47)

Remote Access servers (16)

Lotus Notes servers (14)

SAP servers (17)

Misc Application servers* (24)

* Servers that don't fall into any other categories

In the Unix area, we're currently monitoring 22 HP servers and 14 Sun servers.

The disk storage requirements for our PDR is about 13 GB (that includes program code, raw data files, temporary storage of report files, etc.). The web site we use for report publishing uses another 2 GB of disk storage.

ASSUMPTIONS

A couple of basic assumptions I'll be making:

1. That the volume of data in the PDR and the current capabilities of hardware and software are such that dynamic reporting directly from the PDR is not feasible; reports must be pre-generated. There certainly may be situations where this is not true (particularly if detailed application and process level data is not required); in those cases, other techniques that exploit dynamic report generation functionality would likely be substituted for some of the techniques I'm presenting. However, most of the examples presented could still be used effectively.

2. That the reader has a basic understanding of programming principles in general, basic SAS programming skills in particular, and, to a lesser extent, VBScript programming (for the ASP examples only). I will assume a minimal level of expertise in each, and will attempt to explain concepts and terminology that may not be common knowledge.

1. USING FRAME-BASED PAGES FOR REPORT RETRIEVAL

When frames were first introduced into html syntax, they spawned a great debate; one side felt they were a great and liberating innovation, and the other side felt they would destroy the "purity" of the web surfing experience. Many zealots even proudly posted "Frame-free web site" banners on their home pages. Over time, frames have gained general acceptance and are now widely used. Whether or not you feel that they are overused and a nuisance, I'd like to suggest that frames are ideally suited for a simple report retrieval application - where one frame can be used to make report selections and a second frame can be used to view report output.

A frameset is an html construct that divides a web page into two or more components (frames). In its simplest form, visualize a page split in two (either horizontally (into rows) or vertically (into columns)), with each half containing different content. A frameset statement defines how the page is divided and frame src statements define what content fills each frame. Here's some sample code that defines a frameset:

<frameset rows="15%,85%">

<frame src="iisbar.html">

<frame src="data/iis/iis.all.top5.html" name="reportwin">

The frameset statement indicates that the page is to be split into two rows, with the first row occupying the top 15% of the page and the second row occupying the remaining 85% of the page.

The two frame src statements indicates that the file "iisbar.html" will be used as the initial content for the first row, and the file "data/iis/iis.all.top5.html" as the initial content for the second row. In addition, the second frame src statement assigns a name to that frame - "reportwin", which will be used to route changing content to that frame. There's no need for a name in the first frame src because its content won't be changing.

What do the two frames actually contain? As shown in figure 1, the top frame contains an html form which allows the user to select criteria that determine what report will be displayed and the bottom frame will display the report itself. There are many potential html syntax elements that can be used to build a form and they are beyond the scope of this paper. The actual form code used to build the page in figure 1 ("iisbar.html") is included in the appendix as a sample. The one statement I will discuss briefly is the form statement itself. Here's the form statement that was used on this particular page:

<form method="POST" action="ntforms.asp" target="reportwin">

A full explanation of the method parameter is also beyond the scope of this paper; I will simply state that if you are using ASP to process form output, you will always want to use method="POST". The action parameter is used to specify the name of a script or

[image: image1.png]‘A Shared Server NT Server Performance Reports Menu - Microsoft Intemet Explorer provided by Chevron Global Information Link

SERVER REPORT INTERVAL

CHVPKINDERT weeldy [F0 HomE HELP
-

Mermory Usage

Top 5 Report for 13JUN2000 - Values in red indicate possible resource bottleneck

Servers with possible resource Botlenecks

METRIC SERVER VAL SERVER VAL SERVER VAL SERVER VAL SERVER VAL
AVAIL 10000 10000 10000 10000 10000
COMMIT PCT 3400 3400 B0 200 200
CPU 24HR. CHVPKINDEXZ | 5445 | CHVPK.SSWEBXL | 3087 095 1797 1795
CPU PRIME CHVPKINDEXZ | 5353 | CHVPK.SSWEBXL | 2745 382 215 W87
MEMORY 24-HR. 371 385 Mz 2314 23560
MEMORY PRIME 371 385 2314 23560 24359

Serversinstances with possible resource Bottlenecks

METRIC SERVER _|VAL VAL SERVER VAL SERVER VAL| SERVER [VAL
FILESPACE | CHVPK.WEBZE | 609 1506 | CHVPCWEBIE |2165 3197 | CHVPK.SSAPPAE: |39
[PROCESS CPU 24HR g55| CHUEKSSWERZL gy 55 agsp| CHIPKSSWEED - fy5,, 3816
facvndpy va_ndCPw
PROCESS CPU CHVPK-SSWEBK CHVPK.SSWEBZ

ek 10185 T 100.34] S 4674 403 726
PROCESS MEM 24- 2874 log.s3| CHUPKSSWERD - fogs gy bz 149.34]

HR 12 va_ndCPw

program on the server that will process the form selections and take some action. In this case, it's an ASP page named "ntforms.asp", which will read the report criteria selection chosen by the user, use them to build a URL that points to the desired report, and then send that report back to the user. The target parameter tells the browser where to display the information returned by the ASP page - in this case, "reportwin", which is the bottom frame of the page.

What's the advantage of using a frameset for report retrieval? Why not just submit the report request from a form page and then display the report on a separate page? Well, after the first report is displayed, what if the user wants to request another report? They would have to hit the browser back button, redisplay the form page, fill out the new criteria, and then the second

report would be displayed. If, as is typically the case,

each user will be viewing several (sometimes dozens) of reports, this can become very tedious. With a frameset, the form continues to be displayed in the top frame after the report is retrieved and additional report selections can be easily made without ever leaving the

original page.

Figure1
Some additional considerations when setting up this type of report retrieval structure:

1) You should establish and strictly maintain a structured naming pattern for your report files, so that the server script that retrieves the reports can efficiently build URLs to point to them. In this example, the report criteria were server name, report type, and reporting interval. So you might want to generate report names of the form:

abc.servername.reporttype.interval.outputtype
(outputtype might be html, gif, or jpg, for example).

2) Determine what to display in the report frame when the user first accesses the page (the contents of the second frame src statement). You could leave it blank, but why not make use of it? In the example, we display a daily exception report (details in section 2, "Exception reporting with embedded hyperlinks"). Another option would be to display a help page with instructions or explanations of metrics.

3) Try to minimize the space used by the top form frame, to maximize the viewing area for the reports themselves. In the example, we allocated 15% of the space to the top frame and used a table structure to format the elements of the frame into 2 compact rows that take up a relatively small amount of space.

4) A good practice for almost any web page is to always include a link back to the sites home page and a link to a help page (even if you display the help page as the initial page to display, you should also provide a way to redisplay it after reports have been viewed).

5) Another possible enhancement is to provide links to other commonly accessed pages on your site from the top frame, so that users don't have to return to your home page repeatedly. Because of the limited real estate available in the top frame, a dropdown list of links is the most practical way to do this. A javascript function called "doLink", included in the iisbar.html code in the appendix, accomplishes this.

2. EXCEPTION REPORTING WITH EMBEDDED HYPERLINKS

In a paper that I co-authored with Suresh Gadad and presented at CMG '98 titled "The Incredible Shrinking Performance Staff vs. The Colossal Expanding Server Farm", we described an exception report we had developed (this is the same report that's displayed in figure 1). However the focus of that paper was different than the current one, so we didn't document how we created it. To briefly summarize the intent of this report, I'll quote one paragraph from that paper:

"The reports were designed so that all the exceptions for a class of servers for a single day could be viewed on a single web page. The top five worst performers for each criteria are displayed. Based on a threshold value we defined for each criteria, the values exceeding the threshold are displayed in red and those below the threshold are displayed in black. Each server appears as a hyperlink, which, when clicked, brings up a graph or report that displays a daily or weekly picture of the activity (for that criteria) on the server. This has proven to be an effective and efficient way to identify problems or potential problems with a minimal investment of time."

For performance reporting on very large numbers of servers, in most cases there really isn't any other practical alternative to exception reporting. What web publishing offers as an enhancement is the ability to drill down (through hyperlinks) from an exception metric to whatever level of detail is necessary to understand the meaning of the metric. The code to generate the exception data is fairly complex and highly site-dependent, so I won't attempt to explain it here - I will assume that you have already generated and stored the necessary exception data in a SAS data set. What I will attempt to describe is the use of SAS code to generate the html code that embeds the hyperlinks, as well as a simple method for highlighting metrics in different colors, based on their values.

SAS provides several html formatting tools to aid in generating output for the web. The one used in this example, the HTML Data Set Formatter, takes SAS data and formats it into html tables. It's invoked via a macro call - the macro name is %ds2htm - in which you specify an input SAS data set name, an output html file name, the variables you want to display, and a number of optional formatting parameters that allow you to control the appearance of the output page. Sample code demonstrating the invocation of this macro is included in the appendix.

Now that we have an easy method for displaying SAS data in an html table - how do we go about embedding hyperlinks into the table? The solution is to build SAS character variables that are already formatted in correct html hyperlink syntax. The general format of a text hyperlink is:

text string

where "URL" is the pointer to the page that the hyperlink will take you to and "text string" is the displayed text that you click on to activate the hyperlink.

First, the length of the SAS variables need to be set long enough to contain the entire hyperlink - in our case we defined an array with 5 entries (because our exception report shows the top 5 servers for each metric) and set the variable length to 90:

Array server{*} $ server1-server5;

length server1-server5 $90;

Then we build the variables by concatenating literal strings with the contents of the variables containing the exception data, e.g.:

server(i) = "" || trim(machine) || "";

In this example, what we want the contents of server(i) variables to contain is something like the following:

CHVPK-SYSTEMA

We build it by using 3 regular SAS variables and one SAS macro variable, the contents of which are:

tag ="systema"

typx ="cpureport"

machine ="CHVPK-SYSTEMA"

%ntpfx = "abc"

Some notes about this example:

1) If you need to generate a period after a SAS macro variable, you need to insert an additional period after it (%ntsmf..).

2) Use the trim function to remove trailing blanks from SAS character variables - otherwise the resulting URL string will contain embedded blanks and will not work.

That takes care of generating the hyperlink syntax - how do we highlight exception metrics that exceed a threshold in a different color? As we did for hyperlinks, we build SAS variables that contain the proper html syntax for specifying color properties - in this case:

Assuming that you've set up an array similar to the server array to hold the final values of the metrics for the html table (value1-value5), stored the raw value of each metric in a SAS variable named valx and set a flag variable named thresh to indicate whether the contents of valx exceeds the target threshold (let's say that if thresh=1, the threshold was exceeded and if thresh=0, it hasn't), the following SAS statements will set the color of metrics exceeding your threshold to red:

if thresh = 0 then value(i) = put(valx,7.2);

else value(i) = "" || put(valx,7.2) || "";

Some notes about this example:

1) The put function (put(valx,7.2)) is used to format the value of the metric as a character string.

2) If the metric doesn't exceed threshold (thresh=0), then no assignment is made and the default font color for that page is used. If you wanted to assign a different color to metrics that don't exceed threshold, you could, of course, do so by duplicating the syntax of the else clause.

3. SERVER HEALTH REPORTING USING COLOR-CODED TABLE CELLS

One of the major challenges in performance reporting is how to distill large volumes of information into a compact format that provides meaningful information to users that typically don't have a lot of time to spare. This has always been a difficult task, but is especially challenging in an environment comprised of multitudes of servers. How, for example, do you communicate to a support staff that manages a hundred servers, which are the most heavily and lightly utilized, which are running low on memory and which under-utilize their memory, etc. Exception reporting is one method, useful for identifying extreme behavior, but it doesn't give you a picture of the entire server farm that you can use for capacity planning and load balancing analysis.

The solution we've developed is a color-coded server health report that we publish monthly. It uses the familiar green light / yellow light / red light paradigm that's commonly seen on computer operations console displays. It incorporates the technique of embedding hyperlinks described in the previous section and also includes another technique I'll describe - hyperlinking to javascript popup windows to make the report self-documenting. An example of this report is shown in figure 2 (you'll have to visualize the shades of gray as green, yellow, and red).

Before explaining how this report is generated, I'll briefly describe its format and contents. The first column contains the names of each server, sorted alphabetically. Next to each server is a row of cells that contain metrics for each of up to 7 categories: availability, processor utilization, available memory, and free disk space for up to 4 disks. For each metric, a set of thresholds is defined that determine how that cell is colored. The interpretations of the colors are as follows:

Green: Indicates that the metric is well within the "normal" range and typically doesn't require further action.

Yellow: Indicates that the metric exceeds the "normal" range. It may or may not require further action. Some knowledge of the servers and the types of applications that run on them is useful in determining whether there's any need for follow-up action.

Red: Indicates that the metric is in an extreme range, may be indicative of a serious problem, and definitely warrants some further scrutiny to determine the cause.

[image: image2.png]2 http://perform. chevron.com/data/statustep/Ins.score - Microsoft Intemet Explorer provided by Chevron Global Information Link

Lotus Notes Server Health Report for M

1, 2000 through May 31, 2000

(click on colusan headings for metric definitions or on data cells for detailed reports)

Server [Availability (%) [Processor (%) [Memorv (MBs) [Disk 1 (%) [Disk 2 (%)

[Disk 3 (%)

[Disk 4 (%)

o ponaonr NS I s I
o | N IS I
e [
o s | IS S [S

Eee |
o s | IS I [NS
o rmmar | N I S S

CPLN-UTLINT

Determining the correct thresholds for each metric is largely an empirical exercise. Unless your installation is constantly experiencing major performance problems (in which case, chances are no one will have the time to read your report anyway), the majority of cells should be green, a relatively small number may

be yellow, and red cells should be relatively rare. A case can be made for setting separate thresholds for different server groups based on the types of applications they run, though we opted not to do that to keep things simple and easy to maintain. It also may be necessary to tune the thresholds from time to time based on empirical results, feedback from users, or changes in software or hardware technology.

Each metric in this report is also a hyperlink that links to a graphical report that provides a view of that metric over the course of the month. For example, the processor utilization metric links to a report that shows the average and 90th percentile utilization for that server for each day of the month (figure 3). In addition, the column headings contain hyperlinks to javascript popup windows that describe how the metric is derived and what the threshold values are (figure 4).

Figure 2
The techniques used to generate this report are very similar to those used to build the exception report -

building SAS character variables that contain the correct html syntax for hyperlinks and color

specifications. However, because we want to vary the colors of individual cells in the html table based on the

values of the cell contents (and also to implement the javascript popup windows), we aren't able to use the convenient %ds2htm macro - instead, we have to code the SAS statements to build all of the necessary html ourselves. Once again, as in the previous example, I will assume that you have already generated and stored the necessary exception data in a SAS data set, one observation per server.

Since we're building the html file ourselves this time, we first need to provide a SAS file reference:

filename outfile "&rpfx..scorecard.&filedate..asp"

Note that we're using a file extension of "asp" (ASP page) rather than "html". This is due to the way we're implementing javascript popup windows, which I will explain later. We're also using SAS macro variables to provide values for the report prefix (&rpfx) and date

(&filedate), since those will vary with each execution of the code.[image: image3.png]g

5

H 2 3 maroo

H 8 -2omavoo

H &

5 - Fzousvoo

B & [zsusvoo

3 [y 27usvoo

3 = [2enavoo

g 5 [-2smavoo

= =]

g a 2emavos 5
g 2 2
H £ Faowaroo =
H g Feimaroo =
£ S5 =
2 5 &5 Fzounvoo 32
i H o Elounres 53
H 2 g Eiareo =
= =5 suaroo 55
5 8 ' 1susvoo &
i 3 g: Fiomavoo 2
z 3 &2 Frausroe 3=
3 H 2 Eizusvoo 52
£ z EE THaYOD G4
N = £ r :
1 2 £~ 1ouaroo 43
0B s Eoourroo &
k4 2 g -osmavoo ws
sH 3 =
] 3 2 [ommavoe <o
H 3 =

|z = Foeusvoo

H g s Fosuavoo

H & K] Eoouavoo

2 i E r
fEINH 5 Eozunvoo

H L H Forusroo
£ iy & o s e s e o e e 4 a

H 8 worioziiiin sessesaid x

A &

Next, within the SAS data set in which we process our exception data, we use put statements to output the initial html statements that we need. We only want to do this once, at the beginning of the data step, so we use the _n_ SAS automatic variable to test whether we are at the beginning:

if _n_ = 1 then do;

 file outfile;

/* standard html header data */

 put "<html><body>";

/* file on server containing javascript popup text */

 put "<!--#include file=scorecard.help.html-->";

/* main title line */

 put "<h3>&grpname Server Health Report for &repdstr</h3><p>";

/* secondary title line */

 put "<h4>(click on column headings for metric

 definitions or on data cells for detailed

 reports)</h4><p>";

/* start of table */

Figure 3
 put "<table border=1 cellpadding=2 cellspacing=2><tr>";

/* column headings */

 put "<th bgcolor=beige align=center

 valign=middle>Server</th>";

 put ""<th bgcolor=beige align=center

 valign=middle>Availability

 (%)</th>";

....

each column uses the same syntax,

so code omitted here to save space
....

/* end the row */

 put "</tr>";

end;

That takes care of the "once only" coding (I'll elaborate on the #include statement and the javascript references in the column headings a little later) and we're now ready to begin outputting rows of data. First, we write the server name:

/* start a new row and data cell */

[image: image4.png]Microsoft Intemet Explorer
‘ The Processor meti s defined as the average of the daly pie shit 30th percentie CPU uilization for the server
Green i defined as <= 40% uizalion

Yellowis defined as > 40% 4 < 90% utzation
Fiedis defined as >= 90% utizalion

put "<tr><td bgcolor=white align=center valign=middle>";

/* system variable contains the server name */

put system;

/* terminate this data cell */

put "</td>";

Next, we use select groups to test the values of each metric and build the SAS variables with the html syntax to color the cells properly, the metric values, and the appropriate hyperlinks. After the variable is built, we issue a put statement to write it to our html file. All the cells are built with similar syntax, so I'll just provide an example of the code to build the first cell, which represents the availability metric. The variable assignment statements are quite long and may appear to be very complex to build, but really are fairly straightforward. The key to building them is to first construct what you want the resulting html statements to look like, and then concatenate the appropriate literals and SAS variables piece by piece until the entire statement is completed:

/* assign cell color, metric value, and hyperlink */

select; /* begin select group */

when (totalpct < 95) availd="<td bgcolor=red align=right>" || put(totalpct,5.2) || "</td>";

when (totalpct ge 95 and totalpct < 99) availd="<td bgcolor=yellow align=right>" || put(totalpct,5.2) || "</td>";

otherwise availd="<td bgcolor=lime align=right>" || put(totalpct,5.2) || "</td>";

end; /* end select group */

/* output completed html line to file */

put availd;

After all the cells in each row are written, one additional put statement is required to terminate the table row:

Figure 4
put "</tr>";

And, finally, after all the table rows have been written, the closing html statements are generated:

If eof then do;

 put "</table></body></html>";

end;

That's how the table cells that make up the server health report are generated. Next, I'll describe how the javascript popup windows, which essentially make the report self-documenting, are generated (see figure 4 for an example).

The basic concept is to use a javascript alert command to display context-sensitive help information. The alert command causes a popup window, containing any text you've provided, to open, with a simple OK button that closes the window when clicked. The general form of the javascript alert command is:

alert ('text')

Conveniently, you can embed javascript commands within a hyperlink, so that when the user clicks on the hyperlink, the javascript command is executed. So what we need to do is make the column headings hyperlinks that trigger javascript alerts. However, because in this case the text that we want to display is quite lengthy and it would be cumbersome to code them in SAS (and potentially might exceed the length limits of SAS variables and put statements), what we can do instead is to place the alert commands in a separate file, in the form of javascript functions, and then just embed the function calls in the hyperlinks. When we were generating the "once only" html statements for the report earlier, we used the following statement:

put "<!--#include file=scorecard.help.html-->";

This is a server-side include statement, which means that before the web server delivers the page that contains this statement to the browser, it will insert whatever text it finds in the included file into the page. In this case, the file "scorecard.help.html" contains the set of javascript functions that contain the alert commands we need. The contents of "scorecard.help.html" are included in the appendix.

One more word about server-side includes. Under Microsoft Internet Information Server, server-side includes are not processed if they're embedded within standard html files - they'll just be ignored. However, they are processed if they 're embedded in ASP pages, which is the only reason that we created our html file with the extension ".asp".

So how do we code a javascript function call from within a hyperlink? We've already seen the code among the SAS statements we used previously:

put ""<th bgcolor=beige align=center valign=middle>Availability (%)</th>";

The general form of just the hyperlink syntax portion is:

text string

The void operator is used to indicate that you're calling a function without expecting to get a value returned. An additional point to remember is that the javascript code that defines the functions (in our case, in the "scorecard.help.html" file) must appear in the page before the function is called.

4. SERVER CONFIGURATION REPORTING WITH QUERY CAPABILITY

A common requirement in a large environment consisting of hundreds of servers is the capability to look up basic information about the configuration of individual servers or groups of servers. This might include such information as the number, speed, and type of processors, the amount of physical memory, the operating system level, etc. There are several methods of obtaining information about individual servers, including actually connecting to the server or using various types of real-time monitoring tools, but what if you want to know the answers to questions such as:

1) What are the physical configurations of all my print servers?

2) Are there any servers that haven't been upgraded to the latest patch level of the operating system?

3) Which servers are configured with more than 1 GB of memory?

Clearly, checking individual servers, even with the aid of a gui-based monitoring tool, is not an effective way to answer these types of questions. In our environment, the performance data collector we use for our NT servers (NTSMF) captures this information in a configuration record at the beginning of each data file it generates. So what we decided to do was consolidate the data from all the configuration records into a single configuration file and build an html page that would be able to execute queries against that file. A very reasonable, and perhaps preferable, alternative might be to load the configuration data into a database table (e.g. Access or SQLServer) and then take advantage of their more sophisticated query capabilities. However, to keep things simple and avoid the additional maintenance chores of setting up database load and maintenance procedures, we chose to use a flat file format. We've found that the query capabilities we built are quite adequate for our needs, and, as a bonus, the coding exercise was educational.

The techniques I'm going to explain are the use of html forms for building queries and ASP scripting for processing the query criteria and returning result sets. The code to generate the configuration file from individual configuration records is very specific to the data collector used and not central to the techniques I'm describing, so I will assume that a comma-delimited file has already been created with the following fields:

Server name

Domain name

Physical memory (in MBs)

of CPUs

CPU speed

Processor type

Operating system level

Date of last update

The first line of the file contains column headings; the remainder of the file is data - one record per server. In our case, we generate this file daily and ftp it to our web server, where it replaces the previous days version of the file.

The query form fills the top frame of a frameset and the result set is sent to the bottom frame - the same method that was presented in section 1. The form is slightly different this time, in that instead of option dropdowns with pre-defined entries, we use input boxes that allow entry of text or numbers. Figure 5 shows what this page looks like. The html code for this form - serverconfig.htm - is included in the appendix.

[image: image5.png]A Server Configuration Query - Microsoft Intemet Explorer provided by Chevron Global Information Link

e

Server

cpin

Processor ID O Level

HOME

EEEE]

3

Memory between

#CPUs between[0 | &[33] CPU Speed between

EEEE]

3

HELP

=l
__---—_-

CPLN.DEVANT [SANRAMON AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNDOCI [saNRaMON (60 [z ||200 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLN.DOMDNT [saNRaMoN (256 |2 |16 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLN.GATEINT [saNRaMoN (256 |2 |16 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLNHUBI [sANRaMON [102¢ |2 ||499 AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNPUBINT [saNRaMoN (320 [z |19 AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNPUBINT [saNRaMoN [s12 [z |19 AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNPUB3 [saNRaMON (1152 [¢ |20 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLNPUBANT [saNRaMON [s12 [z 199 AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNPUBSNT [saNRaMON (1152 [¢ |20 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLNPUBGNT [saNRaMON (1152 [¢ |20 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLNPUB7 [saNRaMON [102¢ |2 ||499 AT/ATCOMPATIBLE 40-ServicePacks (06713100
CPLNUTLINT [saNRaMoN (256 |2 ||200 COMPAQSYMMETRICSYSTEMPRO |40-ServicePacks 06713100
CPLNWWWI [saNRaMON [102¢ |2 |[sd9 AT/ATCOMPATIBLE 40-ServicePacks (06713100

Mumber of servers retumed = 14

Just a few comments about this form before I move on to a discussion of ASP scripting:

1) The format of the form statement is identical to the one described in section 1 - only the name of the ASP script has been changed:

<form method="POST" action="config2.asp" target="reportwin">

2) The values of the numeric input boxes have been pre-filled with absolute minimum and maximum values, so that if the users chooses to fill out only text fields, all servers that meet the text field criteria will be returned. Pre-filling of values is done by using the value parameter of the input statement:

<input type=number size=4 value=0 name="memlow">

3) The values of the text input boxes are not explicitly specified, but are left blank. If the user doesn't enter any criteria at all and submits the form, configuration data for every server in the configuration file will be

Figure 5
returned. In our case, that's currently a little over 400 servers, which is a reasonable number. If you don't want to allow that, you can force the user to enter data in some fields by using form validation logic, either within your ASP page, or using javascript code that executes in the browser, before the form is even submitted to the web server.

The ASP page that processes the query criteria is named config2.asp and was coded using VBScript.

Javascript can also be used in ASP, as well as other scripting languages, such as Perl. The complete source code is included in the appendix; I will discuss the logical tasks it performs and highlight a few specific coding techniques:

1) It retrieves the values entered on the form by the user and assigns them to variables. In some languages, this requires parsing a long concatenated string, but this is very easy to do in ASP using the Request object:

x=Request.Form("fieldname")

where fieldname is the name that was specified in the name parameter of the input statement in the form. To relieve the user from worrying about being case-sensitive or entering trailing or leading blanks, we add the Trim and Ucase functions when processing text fields:

x=Trim(Ucase(Request.Form("fieldname")))

2) It checks the contents of the numeric fields to make sure they don't contain any non-numeric data. This could have been done within the browser using javascript, which would save a round trip to the server, but was incorporated into the ASP page as a learning exercise. The IsNumeric function is used:

if not IsNumeric(memhi) then...

If non-numeric data is found, the main body of the code is not executed and an appropriate error message is returned to the user.

3) The range values for the numeric fields are checked to make sure the high values entered are not lower than the low values entered (e.g. for physical memory). If they are, then the values are switched to allow the query to complete successfully.

4) We start outputting the initial html that we will send back to the user. This is very similar to what we did using SAS in earlier examples, but instead of using a SAS put statement, we use the ASP Response.Write command:

Response.Write "<center><table border=1 cellspacing=4 cellpadding=4><tr>"

5) We issue a couple of setup statements that are required to enable access to external files from ASP (the configuration file in this case):

Set slist = Server.CreateObject("Scripting.FileSystemObject")

Set SrvList = slist.OpenTextFile(ServerMapPath("allservers.csv"))

The first statement creates a file system object and the second statement opens the specified file so that it can be accessed as a text stream, one record at a time. If we store the configuration file in the same directory as the ASP page, only the file name is required. If it was located in a different directory or disk, we probably would have used an absolute, full path name.

6) We read the first line of the file to get the column headings and then output the html for the column heading cells:

SrvTemp = SrvList.ReadLine
SrvVar=Split(SrvTemp,",",-1,1)

 Response.Write "<th bgcolor=yellow>" + SrvVars(0) + "</th>"

The first statement uses the ReadLine method to read one record from the file and assign the entire record to the SrvTemp variable. The second statement uses the Split function to assign the comma-delimited values in the SrvTemp variable to elements of a previously defined array named SrvVars. The third statement builds and outputs a line of html - again, just as we did with SAS code earlier - by concatenating literal html syntax with the contents of variables (in this case, the first element of the SrvVars array). This is repeated for all the columns in the table.

7) The main processing loop then reads each data record, using the Split function to break each record into fields, and tests them to see if they meet all of the query criteria. For the text fields, the Instr function is used to test whether the character strings entered as query criteria exist anywhere in the field, rather than testing for an exact match:

if Instr(1,SrvVars(0),S,1) > 0 and ...

This is what allows the user to enter a string which occurs in multiple servers (e.g. "print" for print servers) and get information back on all of them. Of course, this is dependent upon having reasonably consistent naming standards for servers in order to be useful.

8) Table cell syntax is built for each field in each record that meets the query criteria, using the now familiar method of concatenating literals and variables. In addition, a running count is kept of the number of records that qualify. If no records qualify for a particular query, then that counter will have a value of zero, and an appropriate message is returned.

9) After the entire file has been read, a summary line is written that reports the number of servers returned and then the necessary page closing html statements are written. And finally, a few ASP cleanup chores are taken care of:

SrvList.Close

Set SrvList = Nothing

Set slist = Nothing

Response.Flush

The first command closes the file object. The next two commands (Set name = Nothing) free memory and system resources used by the file object. The Response.Flush command causes all the html that all the Response.Write commands built to be sent to the user. This is true only if you set Response.Buffer = true, which we have chosen to do. Otherwise, each line that's built would get sent to the user immediately, which generally is not an efficient way to transmit data over a network connection.

SUMMARY

When new technologies replace older technologies, the habits, terminology, and paradigms associated with the older technologies tend to stay with us for quite some time. As an example, over a hundred years after the invention of the automobile, we still use the term "horsepower" when quantifying the power of automobile engines. Today, virtually every company is using the internet and corporate intranets as mediums for conducting their business, but a lot of the older paradigms linger on.

What I've tried to demonstrate here are a few simple examples of how performance data can be presented in ways that take advantage of the particular strengths of internet technology. The specific programming techniques I've documented are less important than the data presentation and interface design principles. And I hope I've also been able to demonstrate that you don't need to be a professional web developer to implement new and interesting ways to present data effectively.

APPENDIX

iisbar.html:

<! >

<meta http-equiv="PRAGMA" content="NO-CACHE">

<script><!--

//doLink function for use in pull-downs within body content

function doLink(searchForm) {

 for (i=0; i < searchForm.elements[0].options.length; i++) {

 if (searchForm.elements[0].options[i].selected) {

 if (searchForm.elements[0].options[i].value) {

 var urlString = searchForm.elements[0].options[i].value;

 top.location = urlString;

 } } } }//--></script>

<title>Shared Server NT Server Reports Menu</title>

<FORM METHOD="POST" ACTION="ntforms.asp" target="reportwin">

<INPUT TYPE="hidden" NAME="folder" VALUE="iis">

<INPUT TYPE="hidden" NAME="pfx" VALUE="iis">

<table cellpadding=0 cellspacing=9>

<tr><td>SERVER</td><td>REPORT</td><td>INTERVAL</td></tr>

<tr><td valign=top>

<select NAME="server" ALIGN=CENTER>

<OPTION value="cpidx1"> CHVPK-INDEX1

(multiple similar lines removed to save space)

<OPTION value="all"> All Servers

</select>

</td><td valign=top>

<select NAME="reptype" ALIGN=CENTER>

<OPTION value="mem" SELECTED> Memory Usage

<OPTION value="system"> Processor Usage

 (multiple similar lines removed to save space)
<OPTION value="all"> All Reports

</select>

</td><td valign=top>

<select NAME="timeint" ALIGN=CENTER>

<OPTION SELECTED> weekly

<OPTION value="trend"> long term trend

<OPTION VALUE="lastmnth"> last month

<OPTION value="20000614"> 20000614

(multiple similar lines removed to save space)
</select>

</td>

<td valign=top align=center><INPUT TYPE="submit" VALUE="RUN"> </FORM></td>

<td valign=top align=center></td>

<td valign=top align=center></td>

<td valign=top align=center>

<form>

 <p>

 <select name="quick_link" size="1"

 onchange="doLink(this.form)">

 <option selected value>Other Server Groups:</option>

 <option value="gprmenu01.html">GIL Print Servers</option>

 <option value="gfimenu01.html">GIL File Servers</option>

 (multiple similar lines removed to save space)
 </select></p>

 </form>

</td></tr></table>
%ds2htm:

%ds2htm(htmlfile=&web/&ntpfx..all.top5.&filedate..html,

 openmode=replace,

 data=b,

 obsnum=n,

 encode=n,

 var=metric server1 pred1 server2 pred2 server3 pred3 server4 pred4 server5 pred5,

 vsize=-1,

 clsize=-1,

 caption=Servers with possible resource Bottlenecks);

scorecard.help.html:

<script language = "JavaScript">

<!-- Begin hiding here --

function availability(){

alert("The Availability metric is defined as the number of hours during the month that a server was available divided by the number of total potential hours during the month that it could have been available, multiplied by 100. The number of potential hours does not include standard, regularly scheduled outage windows.\n\nGreen is defined as >= 99% availability\nYellow is defined as >= 95% & < 99% availability\nRed is defined as < 95% availability")

}

function processor(){

alert("The Processor metric is defined as the average of the daily prime shift 90th percentile CPU utilization for the server.\n\nGreen is defined as <= 40% utilization\nYellow is defined as > 40% & < 90% utilization\nRed is defined as >= 90% utilization")

}

function memory(){

alert("The Memory metric is defined as the average of the minimum daily prime shift available megabytes of memory for the server.\n\nGreen is defined as >= 10 MB\nYellow is defined as >= 3 MB & < 10 MB\nRed is defined as < 3 MB")

}

function disk(){

alert("The Disk1 - Disk4 metrics are defined as the averages of the daily percent free space remaining on each of the 4 logical disks that have the least percentage of free space remaining for each server. Some servers may have more than 4 logical disks, but this report only includes the 4 that have the least percentage of free space remaining.\n\nGreen is defined as >= 10% remaining\nYellow is defined as >= 5% & < 10% remaining\nRed is defined as < 5% remaining\nWhite indicates that the server has fewer than 4 logical disks")

}

// -- End hiding here -->

</script>

serverconfig.htm:

<title>Server Info Query</title>

<FORM METHOD="POST" ACTION="config2.asp" target="reportwin">

<table border=0)

<tr>

<td>Server</td>

<td><input type=text size=15 maxlength=15 name="server"></td>

<td>Domain</td>

<td><input type=text size=15 maxlength=15 name="domain"></td>

<td>Processor ID</td>

<td><input type=text size=15 maxlength=15 name="procid"></td>

<td>OS Level</td>

<td><input type=text size=15 maxlength=15 name="oslevel"></td>

<td> </td>

<td valign=top align=center>

</td>

<td> </td>

<td valign=top align=center>

</td>

</tr></table>

<table>

<tr>

<td>Memory between

<input type=number size=4 maxlength=4 value=0 name="memlow">

 &

<input type=number size=4 maxlength=4 value=9999 name="memhi">

<td> </td>

<td># CPUs between

<input type=number size=2 maxlength=2 value=0 name="cpulow">

 &

<input type=number size=2 maxlength=2 value=99 name="cpuhi"></td>

<td> </td>

<td>CPU Speed between

<input type=number size=4 maxlength=4 value=0 name="speedlow">

 &

<input type=number size=4 maxlength=4 value=9999 name="speedhi"></td>

<td> </td>

<td><INPUT TYPE="submit" VALUE="Run"></td>

<td> </td>

<td><INPUT TYPE="reset" VALUE="Reset"><td></tr>

</table>

</FORM>

config2.asp:

<%@ Language=VBScript %>

<%

Response.Buffer=true

%>

<HTML>

<BODY>

<%

'initialize variables

Dim SrvVars

SrvVars=Array("a","b","c","d","e","f","g")

SrvCtr=0

ErrCtr=0

Response.Clear

'get form values

'for character fields, strip off leading & trailing blanks & convert to uppercase

S=Trim(UCase(Request.Form("server")))

D=Trim(UCase(Request.Form("domain")))

P=Trim(UCase(Request.Form("procid")))

O=Trim(UCase(Request.Form("oslevel")))

'for numeric fields, just strip off leading & trailing blanks

memlow=Trim(Request.Form("memlow"))

memhi=Trim(Request.Form("memhi"))

cpulow=Trim(Request.Form("cpulow"))

cpuhi=Trim(Request.Form("cpuhi"))

speedlow=Trim(Request.Form("speedlow"))

speedhi=Trim(Request.Form("speedhi"))

'make sure numeric fields don't contain any non-numeric data

if not IsNumeric(memlow) then

ErrCtr=1

end if

if not IsNumeric(memhi) then

ErrCtr=1

end if

if not IsNumeric(cpulow) then

ErrCtr=1

end if

if not IsNumeric(cpuhi) then

ErrCtr=1

end if

if not IsNumeric(speedlow) then

ErrCtr=1

end if

if not IsNumeric(speedhi) then

ErrCtr=1

end if

'execute main section of code if numeric fields were all valid

if ErrCtr=0 then

'convert strings in numeric fields to integers

ML=Cint(memlow)

MH=Cint(memhi)

CL=Cint(cpulow)

CH=Cint(cpuhi)

SL=Cint(speedlow)

SH=Cint(speedhi)

'adjust variables in case high values are lower than low values

if MH < ML then

Temp=MH

MH=ML

ML=Temp

end if

if CH < CL then

Temp=CH

CH=CL

CL=Temp

end if

if SH < SL then

Temp=SH

SH=SL

SL=Temp

end if

'set up text file to be read

Set slist=Server.CreateObject("Scripting.FileSystemObject")

Set SrvList=slist.OpenTextFile(Server.MapPath("allservers.csv"))

'format column headings from first line of file

Response.Write "<center><table border=1 cellspacing=4 cellpadding=4><tr>"

SrvTemp=SrvList.ReadLine

SrvVars=Split(SrvTemp,",",-1,1)

Response.Write "<th bgcolor=yellow>" + SrvVars(0) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(1) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(2) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(3) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(4) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(5) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(6) + "</th>"

Response.Write "<th bgcolor=yellow>" + SrvVars(7) + "</th></tr>"

'main processing loop that reads file sequentailly & builds table

'if theres an exact match of server name, then no need to continue, exit do loop

Do while S <> SrvVars(0)and SrvList.AtEndOfStream <> true

 SrvTemp=SrvList.ReadLine

SrvVars=Split(SrvTemp,",",-1,1)

NumErr=0

'check if numeric fields from file contain numeric data

if not IsNumeric(SrvVars(2)) then

NumErr=1

end if

if not IsNumeric(SrvVars(3)) then

NumErr=1

end if

if not IsNumeric(SrvVars(4)) then

NumErr=1

end if

'if numeric fields are all ok

if NumErr=0 then

'check if current record meets filtering criteria from form values

if Instr(1,SrvVars(0),S,1) > 0 and Instr(1,SrvVars(1),D,1) > 0 and Instr(1,SrvVars(5),P,1) > 0 and Instr(1,SrvVars(6),O,1) > 0 and Cint(SrvVars(2)) >= ML and Cint(SrvVars(2)) <= MH and Cint(SrvVars(3)) >= CL and Cint(SrvVars(3)) <= CH and Cint(SrvVars(4)) >= SL and Cint(SrvVars(4)) <= SH then

'set 0 values to unknown

if SrvVars(4)=0 then

cpuspeed="unknown"

else

 cpuspeed=Cstr(SrvVars(4))

end if

if SrvVars(3)=0 then

numcpus="unknown"

else

 numcpus=Cstr(SrvVars(3))

end if

Response.Write "<td bgcolor=beige>" + SrvVars(0) + "</td>"

Response.Write "<td bgcolor=beige>" + SrvVars(1) + "</td>"

Response.Write "<td bgcolor=beige>" + SrvVars(2) + "</td>"

Response.Write "<td bgcolor=beige>" + numcpus + "</td>"

Response.Write "<td bgcolor=beige>" + cpuspeed + "</td>"

Response.Write "<td bgcolor=beige>" + SrvVars(5) + "</td>"

Response.Write "<td bgcolor=beige>" + SrvVars(6) + "</td>"

Response.Write "<td bgcolor=beige>" + SrvVars(7) + "</td></tr>"

SrvCtr=SrvCtr + 1

end if

end if

loop

'write not found message if no records met filtering criteria

if SrvCtr = 0 then

Response.Write "<td>Not Found</td>"

end if

'write closing table tags, server count, write page, & clean up

Response.Write "</tr>"

Response.Write "</table>"

Response.Write "Number of servers returned = " + Cstr(SrvCtr)

SrvList.Close

Set SrvList = Nothing

Set slist = Nothing

Response.Flush

else

'write message if there was invalid data in numeric fields

Response.Write "One or more numeric fields contain invalid values. Please check & resubmit with valid values."

Response.Flush

end if

%>

</BODY>

</HTML>

1

