
Performance Sentry Proxy SDK Version 1.0

Last Saved 5/24/2012 4:40:00 PM

Copyright 2012 by Demand Technology Software. The information contained herein is

the property of Demand Technology Software and may not be distributed without prior

written consent from the Company.

 Page i

Performance Sentry Proxy SDK

May 24, 2012

Author: Mark Fuini

 Reviewer: Phil Henninge

Performance Sentry Proxy SDK Version 1.0

Last Saved 5/24/2012 4:40:00 PM

Copyright 2012 by Demand Technology Software. The information contained herein is

the property of Demand Technology Software and may not be distributed without prior

written consent from the Company.

 Page ii

1. Revision History ... 1

2. Overview ... 1
3. API Architecture ... 2
4. SDK Components ... 2

4.1. Performance Sentry ... 2
4.2. Performance Sentry Proxy .. 2

4.2.1. Performance Sentry Proxy Installation ... 3
4.2.1. Performance Sentry Proxy Configuration ... 5
4.2.2. Performance Data Management Interface .. 6

4.3. SDK Client Samples ... 7

4.3.1. Web Service Reference ... 8
4.3.2. Configuration .. 9
4.3.3. Making the request .. 10

4.3.4. Examining the data ... 12
4.3.5. PowerShell Sample Code .. 13
4.3.6. Building a UI Application ... 16

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 1

1. Revision History

Author Date Version Description

Mark Fuini 11-22-2011 V0.1 Initial Version
without
Powershell
Sample Code

Mark Fuini 12-21-2011 v1.0 Updated Sample
Code with the
ClientEx
application.

Updated
Collection Service
Proxy Install
procedure.

Phil Henninge 12-23-2011 V1.0 Review and Edit

Mark Fuini 12-26-2011 V1.0 Updated from
Review
Comments

Phil Henninge 05-04-2012 V1.0 Review and Edit

2. Overview

Thank you for your interest in Demand Technology Software’s Performance Sentry

product.

This document describes the Performance Sentry SDK. The SDK will allow 3
rd

 Party

applications to retrieve historical performance data from a particular machine running the

Performance Sentry Collection Service. Third party applications will be able to retrieve

data collected by the service as needed for troubleshooting instead of having to process

the entire SMF data collection file in ad-hoc situations, or as a daily scheduled event.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 2

3. API Architecture Overview

The Performance Sentry Application Programming Interface (API) is used by third party

software to communicate with the Performance Sentry Proxy Service. The Proxy Service

receives requests for information through the API then uses the SMF Index file to

reference the performance data in the SMF file and return the requested data to the API

calling program.

4. SDK Components

4.1. Performance Sentry

Performance Sentry Collection Service for Windows should be installed on the machine

where performance data is to be collected. Performance Sentry writes Windows

performance data to the SMF files. Refer to the Performance Sentry User Manual for

more information about Performance Sentry installation and operation.

4.2. Performance Sentry Proxy

The Performance Sentry Proxy is a new component which provides 3
rd

 party applications

access to the performance data collected by the Performance Sentry Collection Service on

a particular machine. This component is installed as a Windows service on each machine

where Performance Sentry Collection Service is running. This component is a Microsoft

.NET Service which uses Windows Communication Foundation (WCF) for

communication.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 3

4.2.1. Performance Sentry Proxy Installation

The Performance Sentry Proxy service requires version 4.0 of the .NET Framework and

at minimum, version 4.0.0.5 of the Performance Sentry Collection Service.

The Performance Sentry Proxy is installed with the Performance Sentry Collection

Service beginning with version 4.0.0.13.

The Performance Service Proxy must be installed with the Microsoft .NET Installer Tool

program called installutil.exe. Developers of Windows Services in Microsoft.Net will be

familiar with this process of installing .NET services.

Start by unzipping the PerformanceSentryProxy.zip file to a new folder, preferably:

 C:\Program Files\NTSMF40

After unzipping the PerformanceSentryProxy.zip file, navigate to the Microsoft .NET 4.0

directory on your system:

 C:\Windows\Microsoft.NET\Framework\v4.0.xxxxxx

 and execute the following command:

 installutil.exe “C:\Program Files\NTSMF\PerformanceSentryProxy.exe”

 Note: You can unzip the files contained in PerformanceSentryProxy.zip to any folder

you choose and change the installutil.exe command accordingly.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 4

Below is a screen capture showing the installutil command:

When the command successfully finishes, the message “The transacted install has

completed” will be displayed as in the screen capture above.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 5

To verify the server has started, look at the windows services for the Performance Sentry

Proxy:

4.2.1. Performance Sentry Proxy Configuration

The Performance Sentry Proxy hosts a performance data manager WCF service that can

be configured by editing the PerformanceSentryProxy.exe.config file in the installation

directory. There are two endpoints configured by default. One uses HTTP and the other

uses NetTcp. The addresses that need to be specified when connecting to the

Performance Sentry Proxy from another machine are shown in the baseAddresses section.

This configuration can be modified as needed.

<services>

 <!-- Performance Data -->

 <service behaviorConfiguration="PerformanceDataManager.Behavior"

 name="DTS.CollectionServiceProxy.PerformanceDataManager">

 <endpoint address="" binding="netTcpBinding"

bindingConfiguration="NetTcpStreamingBindingEndpoint"

 name="NetTcpStreamingBindingEndpoint"

 contract="DTS.CollectionServiceProxy.IPerformanceDataMgmt" />

 <endpoint address="" binding="basicHttpBinding"

bindingConfiguration="basicHttpStreamingBinding"

 contract="DTS.CollectionServiceProxy.IPerformanceDataMgmt" />

 <endpoint address="mex" binding="mexTcpBinding"

name="MexTcpBindingEndpoint"

 contract="IMetadataExchange" />

 <host>

 <baseAddresses>

 <add baseAddress="net.tcp://localhost:5558/DTSPSP" />

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 6

 <add baseAddress="http://localhost:5557/DTSPSP" />

 </baseAddresses>

 </host>

 </service>

The bindings section of the configuration is also important. This contains the bindings

for each endpoint. By default, a streamed binding is used. In general, the

maxReceivedMessageSize should be about 100kb. The message size can be increased if

more historical data is necessary.

 <bindings>

 <basicHttpBinding>

<binding name="basicHttpStreamingBinding"

maxReceivedMessageSize="100000"

 transferMode="Streamed" />

 </basicHttpBinding>

 <netTcpBinding>

 <binding name="NetTcpStreamingBindingEndpoint" closeTimeout="00:01:00"

 openTimeout="00:01:00" receiveTimeout="00:10:00"

sendTimeout="00:01:00"

transactionFlow="false" transferMode="Streamed"

transactionProtocol="OleTransactions"

hostNameComparisonMode="StrongWildcard" listenBacklog="10"

maxBufferPoolSize="524288"

maxBufferSize="65536" maxConnections="10"

maxReceivedMessageSize="100000">

<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384"

 maxBytesPerRead="4096" maxNameTableCharCount="16384" />

 <reliableSession ordered="true" inactivityTimeout="00:10:00"

 enabled="false" />

 <security mode="Transport">

<transport clientCredentialType="Windows"

protectionLevel="EncryptAndSign" />

 <message clientCredentialType="Windows" />

 </security>

 </binding>

…

 </netTcpBinding>

 </bindings>

If these settings are changed, the proxy service must be restarted.

4.2.2. Performance Data Management Interface

Historical performance data can be retrieved from a particular machine by using the

IPerformanceDataMgmt interface of the Performance Sentry Proxy.

The performance data management interface is shown below.

 [ServiceContract]
 public interface IPerformanceDataMgmt
 {

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 7

 // Returns performance data
 [OperationContract]
 PerformanceData GetPerformanceData(PerformanceDataRequest Request);

 // Returns the ordered counters from the discovery record
 [OperationContract]
 string[] GetCounterNames(string Object);

 // Returns objects from the discovery record
 [OperationContract]
 string[] GetCollectionObjectNames();
 }

Performance data is retrieved by passing a PerformanceDataRequest object to the

proxy through the GetPerformanceData method. The PerformanceDataRequest

object requires a start time, end time, and list of object data to be returned over the

requested time period.

Instance filters can be specified to restrict the data being returned to specific instances of

the objects requested. Counter test filters can also be specified to return only instances of

objects for which the specified counter meets the test. These filters can be used to reduce

the amount of data returned to the caller. These mechanisms will be further explained in

the sample code examples.

In the event that the caller needs to know which counters are being collected for a

particular object, the GetCounterNames method can be used.

To find out the objects which have been collected, on the machine the caller can utilize

the GetCollectionObjectNames.

4.3. SDK Client Samples

The SDK provides sample code to develop client applications. The program examples

were written in in C# using Visual Studio 2010. Examples using Microsoft Powershell

v2 are also provided. Other platforms which support WebServices can also be utilized

depending on customer requirements.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 8

The table below lists the sample projects included in the SDK and their descriptions:

Project Name Description APIs Exercised Platform

CollectEx Sample code to

collect specific

objects for the last

30 minutes based

upon using

specified counters,

all counters, and

instance and

counter filters.

GetPerformanceData,

GetCounterNames

C#,

Powershell

v2

CollectAll Sample code to

collect all counters

of one specific

object for the last

30 minutes. Object

name is passed for

an argument.

GetPerformanceData,

GetCounterNames

C#,

Powershell

v2

ListObjects Sample to show

how to make call

to the Get

CollectionObjects

API

GetCollectionObject Names Powershell

v2

ClientEx Sample to show

how to develop a

client UI

application for

performance data

retrieval.

GetCollectionObjectNames,

GetPerformanceData,

GetCounterNames

C#

4.3.1. Web Service Reference

A web service reference is created in a Visual Studio project by right clicking on the

Service References item and selecting Add Reference. This has already been done in

the sample project. When adding a service reference, the URI of the web service is

specified. In this case, the URI will be the same location as what is configured in the

Performance Sentry Proxy for the HTTP binding. In the example code, the DTS

namespace was specified when creating the service reference.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 9

4.3.2. Configuration

When the WebService reference is added, entries for the configuration will be added to

the app.config file.

There will be a configuration for the binding. This is where options such as the

maxReceivedMessageSize can be modified.

 <system.serviceModel>
 <bindings>
 <basicHttpBinding>

<binding name="BasicHttpBinding_IPerformanceDataMgmt"
closeTimeout="00:01:00"

openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288"
maxReceivedMessageSize="65536"

 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" />
…
 </binding>
 </basicHttpBinding>

There is also a client configuration address with the end points of the added web service.

The address of the endpoint is specified according to the location of the Performance

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 10

Sentry Proxy. If your application is monitoring more than one collection service, the

proxy can be created dynamically so it does not rely upon this endpoint base address.

 <client>
…

<endpoint address="http://localhost:5557/DTSPSP" binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_IPerformanceDataMgmt"

contract="DTS.IPerformanceDataMgmt"
name="BasicHttpBinding_IPerformanceDataMgmt" />

 </client>

4.3.3. Making the request

In order to request data, a data request object is created. The data request has an object

list indicating which objects to retrieve historical data. These objects are instantiated and

assigned a particular name. Note: Any object, counter, or instance names specified in

the data request object are case-sensitive.

 // Set up the object we would like to collect
 DTS.PerformanceObject perfObject = new DTS.PerformanceObject();
 perfObject.Name = "Process";

Counters are assigned to the object for data that the user wants to retrieve. It is important

to only request data which will be used in order to minimize bandwidth for the request.

 perfObject.Counters = new PerformanceCounter[3];

DTS.PerformanceCounter ProcessorTime = new DTS.PerformanceCounter();
ProcessorTime.Name = "% Processor Time";

 DTS.PerformanceCounter UserTime = new DTS.PerformanceCounter();
 UserTime.Name = "% User Time";
 DTS.PerformanceCounter IdProcess = new DTS.PerformanceCounter();
 IdProcess.Name = "ID Process";

 perfObject.Counters[0] = ProcessorTime;
 perfObject.Counters[1] = UserTime;
 perfObject.Counters[2] = IdProcess;

Once the object is created, it can be added to an object list which will be assigned to the

data request object later in the process.

 // Object list
 ArrayList ObjectList = new ArrayList();
 ObjectList.Add(perfObject);

If all of the counters of a particular object are needed, then the client can call the function

GetCounterNames for a particular object. This will return a list of the counters being

collected for the object. This list can then be used to build the list of counters to be

collected.

 // Get the counters for the thread object and retrieve them all

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 11

 string[] CounterNames = client.GetCounterNames("Memory");
 if (CounterNames != null)
 {
 // Get the thread object
 DTS.PerformanceObject threadObject = new DTS.PerformanceObject();
 threadObject.Name = "Memory";
 threadObject.Counters = new PerformanceCounter[CounterNames.Length];
 for (int i = 0; i < CounterNames.Length; i++)
 {
 PerformanceCounter pc = new PerformanceCounter();
 pc.Name = CounterNames[i];
 threadObject.Counters[i] = pc;
 }
 ObjectList.Add(threadObject);
 }

// Add the object to the list of objects for the request
PerformanceObject[] perfObjects = new PerformanceObject[ObjectList.Count];

 for (int i = 0; i < ObjectList.Count; i++)
 perfObjects[i] = (PerformanceObject) ObjectList[i];

Object instance filters can be used to reduce bandwidth to restrict collection to only

specific instances of an object. In the example below, the Process object data is only

returned for the instances specified.

DTS.PerformanceObjectInstanceFilter filter = new
DTS.PerformanceObjectInstanceFilter();
 filter.ObjectName = "Process";
 filter.InstanceNames = new string[] { "svchost", "DmPerfss" };

The user may not want to receive all instances for the object if the time interval is large.

To restrict data even further, a counter filter was created to filter on a counter of an

object. The threshold can be a test whether the counter is less than, less than or equal,

greater than, greater than or equal, or just equal to a value.

In the following example only process instances with a value of “% Processor Time” >

1% are returned.

// Set up a counter test filter for % Processor Time, instances
// which don't meet the threshold will be not returned
DTS.PerformanceCounterTestFilter counterTest = new
DTS.PerformanceCounterTestFilter();
counterTest.ObjectName = "Process";
counterTest.CounterName = "% Processor Time";
counterTest.Value = 1.0;
counterTest.Type = DTS.PerformanceCounterTestType.GT;

When the performance data objects and counters are configured, then the performance

data request can be configured. The objects requested are specified, along with end time,

start time, and any applicable filters.

// Set up the request

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 12

DTS.PerformanceDataRequest request = new DTS.PerformanceDataRequest();
request.EndTime = DateTime.Now;
request.StartTime = request.EndTime - new TimeSpan(0, 30, 0);
request.ObjectsRequested = perfObjects;
request.InstanceFilters = new DTS.PerformanceObjectInstanceFilter[] {

filter };
request.PerformanceCounterTestFilters = new

DTS.PerformanceCounterTestFilter[] { counterTest };

4.3.4. Examining the data

To request the data, the following call is made passing the ‘request’ object. The ‘request’

is of type PerformanceDataRequest.

// Get the performance data

 DTS.PerformanceData data = client.GetPerformanceData(request);
 if (data==null)

throw new Exception("Could not get performance data.");

The PerformanceData class contains an ObjectNames field which is an array of strings

with the names of the objects to fulfill the request. If the first object request is ‘Process’,

then ObjectNames[0] will be ‘Process’ The ObjectData field is the ‘jagged’ array of

PerformanceObjectData instantiations for each object. If the first object requested is

‘Process’, then the PerformanceObjectData for the process will be in the array in the

location of ObjectData[0][].

The PerformanceObjectData class is utilized to hold the counter values of each instance

returned for a particular requested object at a particular collection time. The names of the

instances returned are in the InstanceNames[] string array. The name of the first

instance of an object at a particular collection time indexed by the InstanceNames[0]

value. Uninstanced objects will have a blank instance name.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 13

The actual counter values are in a jagged array called Values. The counter values are

indexed in the same order as they are requested. For the first instance of a particular

object, the Values would be in the Values[0][] array. These values must be null-

checked since uncollected counter values are represented by null instead of 0.0 or

some distinct numerical value. See the highlighted text in the example below.

The following code constructs a message containing the object instances and values:

 // Data is returned in the ObjectData array for each object name
 for (int i = 0; i < data.ObjectNames.Length; i++)
 {
 // Instances of the object are stored in the ObjectData array sorted by Time
 for (int instance=0; instance < data.ObjectData[i].Length; instance++)
 {
 // Get the sample for the instance of the ith object
 PerformanceObjectData sample = data.ObjectData[i][instance];

 string message = data.ObjectNames[i] + "," +
sample.CollectionTime.ToString();

 // Each object has a number of instances
 for (int j=0; j < sample.InstanceNames.Length; j++)
 {
 message = message + "\r\n" + sample.InstanceNames[j];
 // Each instance has a number of values ordered by the request order
 for (int k = 0; k < sample.Values[j].Length; k++)
 {
 message = message + ",";

 if (sample.Values[j][k] != null)
 message += sample.Values[j][k];
 }
 }
 }

4.3.5. PowerShell Sample Code

The Performance Sentry Proxy webservice can also be accessed via PowerShell v2.

Starting with PowerShell v2, there is a new New-WebServiceProxy cmdlet that

automatically generates a proxy to the specified web service. Before executing the

sample “collect” script, enter the following command into PowerShell to generate the

web service proxy. The –uri parameter should be the configured URI of the http endpoint

for Collect Service Proxy.

$proxy = New-WebServiceProxy -Uri 'http://localhost:5557/DTSPSP' -namespace DTS

This proxy has to be generated one time for each PowerShell session. If the proxy is

generated a second time with the same DTS namespace, then PowerShell will generate a

superfluous casting error to the same type due to a Microsoft bug. For this reason, it is

recommended that the $proxy variable be used for the life of the PowerShell session.

Once the $proxy variable is created and the script is loaded, then the collect command

can be typed at the command line in PowerShell repeatedly.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 14

The example script shows the process object with 3 counters, instance filter, and counter

filter with data being retrieved for the last 30 minutes.

example collect script to collect data from the collection service proxy

execute this before the script so that the DTS proxy variable is set up:

$proxy = New-WebServiceProxy -Uri 'http://localhost:5557/DTSPSP' -namespace DTS

this can only be done once per powershell session since powershell has a bug
that will create a superfluous casting error if the proxy is created twice

function collectex
{

create object to collect
$object = New-Object DTS.PerformanceObject
$object.Name = 'Process'

#create the filter
$filter = New-Object DTS.PerformanceObjectInstanceFilter
$filter.ObjectName = 'Process'
$filter.InstanceNames = @('svchost','DmPerfss')

A counter filter test can be created in Powershell just as in C#.

#counters
$countertestfilter = New-Object DTS.PerformanceCounterTestFilter
$countertestfilter.ObjectName = 'Process'
$countertestfilter.counterName = '% Processor Time'
$countertestfilter.ThresholdValue = 0.1
$countertestfilter.ThresholdValueSpecified = $true

In order to specify the type of counter test, the new enum object is created. To assign the

value, use the integer value of the enum. Using the integer value is a disadvantage over a

standard enumerated type but PowerShell does not seem to recognize the actual

enumerated type values to do the assignment. Lastly, the ‘Type Specified’ flag must be

set. This flag must be set or the proxy does not transmit the value to the web server.

$testtype = New-Object DTS.PerformanceCounterTestType
$testtype.value__ = 1 # enums are converted to int in ascending order starting with
zero LT,GT,LTE,GTE,EQ
$countertestfilter.Type = $testtype
$countertestfilter.TypeSpecified = $true

The rest of the example is similar to the C# example above with some modifications for

Powershell syntax.

filter the counters
$counter = New-Object DTS.PerformanceCounter
$counter.Name = '% Processor Time'

$counter2 = New-Object DTS.PerformanceCounter
$counter2.Name = '% User Time'

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 15

$counter3 = New-Object DTS.PerformanceCounter
$counter3.Name = 'ID Process'

$object.counters = @($counter,$counter2,$counter3)

set up the memory object to collect all of the counters
$mobject = New-Object DTS.PerformanceObject
$mobject.Name = 'Memory'

$mcounters = $proxy.GetCounterNames('Memory')
if ($mcounters -eq $null)
{
 Write-Host 'Could not get the counternames for the Memory object'
}
else
{
 $mobject.counters = @()
 foreach ($countername in $mcounters)
 {
 $mcounter = New-Object DTS.PerformanceCounter
 $mcounter.Name = $countername;
 $mobject.counters += @($mcounter)
 }

 # set up the time
 $endtime = [System.DateTime]::Now
 $duration = New-Object System.TimeSpan(0,0,30,0)
 $starttime = $endtime - $duration

 # create the request
 $request = New-Object DTS.PerformanceDataRequest
 $request.ObjectsRequested = @($object,$mobject)
 $request.InstanceFilters = @($filter)
 $request.PerformanceCounterTestFilters = @($countertestfilter);
 $request.StartTime = $starttime
 $request.EndTime = $endtime
 $request.StartTimeSpecified = $true
 $request.EndTimeSpecified = $true

 Write-Host 'Collecting from ' $uri ' Object(s) ' $request.ObjectsRequested '
FilteredInstances(s) ' $request.InstanceFilters
 Write-Host 'From ' $starttime ' To ' $endtime

 # get the data
 $data = $proxy.GetPerformanceData($request)

 # Data is returned in the ObjectData array for each object name
 for ($i = 0; $i -lt $data.ObjectNames.Length; $i++)
 {
 # samples of the object are stored in the ObjectData array sorted by Time
 for ($s = 0; $s -lt $data.ObjectData[$i].Length; $s++)
 {
 # Get the sample of the ith object
 $sample = $data.ObjectData[$i][$s]

 $message = $data.ObjectNames[$i] + ',' + $sample.CollectionTime

 # Each sample has a number of instances, for each instance output the
counter values

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 16

 for ($j=0; $j -lt $sample.InstanceNames.Length; $j++)
 {

 $message = $message + "`r`n" + $sample.InstanceNames[$j]

 # Each instance has a number of values ordered by the request counter
order
 for ($k = 0; $k -lt $sample.Values[$j].Length; $k++)
 {
 $message = $message + ','

 if ($sample.Values[$j][$k] -ne $null)
 {
 $message = $message + $sample.Values[$j][$k]
 }
 }
 }

 Write-Host $message
 }
 }
}

$uri = $null
$message = $null
$object = $null
$counter = $null
$filter = $null
$result = $null
$request = $null
$proxy = $null

}

4.3.6. Building a UI Application

One of the ways developers can utilize the API is by building applications which retrieve

historical data in near real-time for a particular machine. The SDK includes a sample

application called ClientEx to demonstrate how such an application might work.

The application allows the user to browse network machines to retrieve recent or

historical data. Once a machine is selected by the user, the collected objects on the

machine are retrieved by calling the GetCollectedObjects method on the Performance

Sentry Proxy.

Once the object is the selected, the program retrieves the available counters for the object

on the selected machine by calling the GetCounterNames method. When a counter

name is selected, a data request for that counter is created for the selected duration. The

duration of data to be returned can be manually selected or set to auto refresh. The data

request is then passed to the GetPerformanceData method on the proxy to the selected

machine. The results are shown on the chart and values tab.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 17

The sample demonstrates the API instance and counter test filters. The ‘use instance

filter’ button enables the instance filter and allows the user to select the ‘Filters’ button.

The ‘Filters’ button launches a dialog box where the user can enter instance names.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 18

After pressing ‘OK’, you can see the results of the filter after you press refresh. Only data

for the specified instances is shown:

The counter test filter allows the user to enter a value and select an operation to perform

with it against the actual counter value of any object instances in the specified time

period. If the counter value does not meet the test for a particular instance of the

performance object, then that instance of the object is not returned. The following

example shows data returned if the ‘% Processor Time’ is > 10% over the specified

duration.

Copyright 2012, Demand Technology Software, Inc. This document is the property of Demand
Technology Software, Inc. and its contents may not be disclosed without their express permission.

 Page 19

It is important to note, that since the user can decide which machine to monitor, the proxy

object is created dynamically. The format of the base address is read from the

configuration file with the $MachineName replaced with the machine name selected by

the user to retrieve data as shown below.

string baseAddress =
Properties.Settings.Default.PerfSentryDataMgmtAddress.Replace("$MachineName",
MachineName);

PerformanceDataMgmtClient proxy = new PerformanceDataMgmtClient(
 Properties.Settings.Default.PerfSentryDataMgmtBinding,
 baseAddress);

This example demonstrates how to utilize the functions of the Performance Sentry Proxy

to build a ‘recent history’ data collection application with the Performance Sentry SDK.

