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Introduction.  

This paper discusses the legacy technique for measuring processor utilization in Windows that is based 

on sampling. This technique for measuring processor utilization is efficient and generally adequate for 

capacity planning. However, it lacks the precision performance engineers require for application 

optimization and tuning, particularly over small measurement intervals. The paper then introduces 

newer techniques for measuring processor utilization in Windows that are event-driven. The event-

driven approaches are distinguished by far greater accuracy, enabling the reconstruction of the precise 

path that threads, processes and processors take when they execute. Gathering event-driven 

measurements entails significantly higher overhead, but measurements indicate this overhead is well 

ǿƛǘƘƛƴ ŀŎŎŜǇǘŀōƭŜ ōƻǳƴŘǎ ƻƴ ǘƻŘŀȅΩǎ ƘƛƎƘ ǇƻǿŜǊŜŘ ǎŜǊǾŜǊ ƳŀŎƘƛƴŜǎΦ  

As of this writing, Windows continues to report measurements of processor utilization based on the 

legacy sampling technique. The more accurate measurements that are derived using events are gaining 

ground, however, and can be expected to supplant the legacy measurements in the not too distant 

future.  

While computer performance junkies like me relish the prospect of obtaining more reliable and more 

precise processor busy metrics, the event-driven measurements do leave several very important issues 

in measuring CPU utilization unresolved. These include validity and reliability issues that arise when 

Windows is running as a guest virtual machine under VMware, Zen, or Hyper-V that impact the accuracy 

of most timer-based measurements. (In an aside, mitigation techniques for avoiding some of the worst 

measurement anomalies associated with virtualization are discussed.) 

A final topic concerns characteristics of current Intel-compatible processors that undermine the 

rationale for using measurements of CPU busy based solely on thread execution time. We discuss the 

value of using internal hardware measurements of the processorΩǎ ƛƴǎǘǊǳŎǘƛƻƴ execution rate to 

understand and improve application performance. While we make the case for using internal hardware 

ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ǘƘŜ ǇǊƻŎŜǎǎƻǊΩǎ ƛƴǎǘǊǳŎǘion execution rate to augment more conventional measures of 

CPU busy, we also acknowledge some of the current barriers that advocates of this approach encounter 

when they attempt to put it into practice today. 

Sampling processor utilization.  

The technique used to calculate processor utilization in Windows is based on gathering periodic samples 

ƻŦ ǘƘŜ ǇǊƻŎŜǎǎƻǊΩǎ ŜȄŜŎǳǘƛƻƴ ǎǘŀǘŜΦ This legacy technique is characterized by low overhead, yielding 

measurements with a reasonable degree of accuracy over the kinds of time intervals that computer 

capacity planning, for example, requires. The sampling methodology was originally devised 20 years ago 

for Windows NT. Since one of the original design goals of Windows NT was to achieve a high degree of 
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hardware independence, the measurement methodology was also designed so that it was not 

dependent on any specific set of processor hardware measurement features.  

The familiar % Processor Time counters in Perfmon are the measurements derived using this sampling 

technique. The measurement procedure uses an OS Scheduler periodic clock interrupt to sample the 

execution state of the processor once per interval. The periodic clock interrupt is a high priority, timer-

based, hardware clock interrupt that is programmed to fire 64 times per second, once approximately 

every 15.6 ms. This clock interrupt is used to calibrate ǘƘŜ ǎȅǎǘŜƳΩǎ ¢ƛƳŜ ƻŦ 5ŀȅ ŎƭƻŎƪΣ ǿƘƛŎƘ Ŏŀƴ ǘƘŜƴ ōŜ 

retrieved by calling the GetSystemTime function. 

The operating ǎȅǎǘŜƳΩǎ ŎƭƻŎƪ ƛƴǘŜǊǊǳǇǘ ǊƻǳǘƛƴŜ ǇŜǊŦƻǊƳǎ ŀŘŘƛǘƛƻƴŀƭ ŦǳƴŎǘƛƻƴǎΣ ƛƴ ŀŘŘƛǘƛƻƴ ǘƻ ǳǇŘŀǘƛƴƎ ǘƘŜ 

current system clock value. One of those other functions is CPU accounting, which is performed by 

recording the current execution state of each processor, immediately prior to the occurrence of clock 

interrupt. If the processor was running the Idle loop when the h{Ωǎ ǇŜǊƛƻŘƛŎ interrupt occurs, it is 

recorded as an Idle Time sample. If the processor was running some application thread, that is recorded 

as a CPU busy sample. Busy samples are then accumulated continuously at both the thread and process 

level. Since roughly 64 clock interrupts occur each second, the % Processor Time measurements are 

based on samples of the processor execution state gathered 64 times per second.1 

This periodic sampling of the execution state of each processor is the source of the processor utilization 

measurements at the processor, process and thread level in both Perfmon and TaskMan, as well any 

number of Windows API calls that allow applications to retrieve that measurement data. Figure 1 

                                                           
1
  ¢ƘŜ ǇŜǊƛƻŘƛŎ ŎƭƻŎƪ ƛƴǘŜǊǊǳǇǘ ŀŘǾŀƴŎŜǎ ǘƘŜ ǎȅǎǘŜƳ ŎƭƻŎƪ ǾŀƭǳŜ ōȅ ŀ мрΦс Ƴǎ άǘƛŎƪΦέ ¸ƻǳ Ŏŀƴ ŀŎŎŜǎǎ ǘƘŜ ǇǊŜŎƛǎŜ ǾŀƭǳŜ ǘƘŀǘ ǘƘŜ hS 

uses between timer interrupts by calling  the GetSystemTimeAdjustment() function.  
  
This difference between the precision with which the system reports clock values and the actual granularity of system Time of 
5ŀȅ ŎƭƻŎƪ ǾŀƭǳŜ ǳǇŘŀǘŜǎ ƛǎ ǘƘŜ ǎƻǳǊŎŜ ƻŦ ŜƴŘƭŜǎǎ ŎƻƴŦǳǎƛƻƴ ƛƴ ²ƛƴŘƻǿǎΦ {ŜŜΣ ŦƻǊ ŜȄŀƳǇƭŜΣ wŀȅƳƻƴŘ /ƘŜƴΩǎ ά¢ƘŜ hƭŘ bŜǿ ¢ƘƛƴƎέ 
ōƭƻƎ ǇƻǎǘƛƴƎ άPrecision is not the same as accuracyέ ƻƴ ǘƘƛǎ ǎǳōƧŜŎǘΦ ¦ƴŦƻǊǘǳƴŀǘŜƭȅΣ /ƘŜƴΩǎ ŘƛǎŎǳǎǎƛƻƴ ƻŦ ǘƘŜ ƛǎǎǳŜ on his popular 
Microsoft insider blog probably raises as many questions as it answers. The range of comments from his readers further 
illustrates some of the confusion around this topic. 
 
Clock and timer values in Windows are reported in a standardized hh:mm:ss format, with fractional seconds reported to seven 
ŘŜŎƛƳŀƭ ŘƛƎƛǘǎΦ ¢ƘǳǎΣ ŜŀŎƘ ƭƻƎƛŎŀƭ άǘƛŎƪέ ƻŦ ǘƘŜ ǎȅǎǘŜƳ ŎƭƻŎƪ ŘŜƴƻǘŜǎ млл ƴŀƴƻǎŜŎƻƴŘǎ ƻŦ ŜƭŀǇǎŜŘ ǘƛƳŜΦ However, if you write a 
program that spins in a loop, checking the value of the Windows Time of Day clock continuously, you will observe the clock 
value remains stationary until it is updated during the periodic clock interrupt. When your program resumes execution 
following the clock interrupt, you will then observe ŀ ŎƭƻŎƪ άǘƛŎƪέ ƻŦ ŀōƻǳǘ 15.6 milliseconds added to the previous value of the 
system clock. 
 
!ƴƻǘƘŜǊ ǎƻǳǊŎŜ ƻŦ ŎƻƴŦǳǎƛƻƴ ƛǎ ǘƘŜ ōŜǿƛƭŘŜǊƛƴƎ ŀǊǊŀȅ ƻŦ ǎȅǎǘŜƳ ¢ƛƳŜ ŦǳƴŎǘƛƻƴǎ ŀǾŀƛƭŀōƭŜ ƛƴ ²ƛƴŘƻǿǎΦ {ŜŜ ǘƘŜ άTime Functionsέ 
article in the official MSDN library documentation for details.  
 
A high resolution timer facility called QueryPerformanceCounter was introduced in Windows 2000. The names of the 
QueryPerformanceCounter and QueryPerformanceFrequency time functions that are used in obtaining high resolution clock 
values in Windows reflect their origin in solving the clock resolution problem specifically for the purpose of performance 
measurement. Unfortunately, the API names serve to obscure their key role in Windows in obtaining more precise 
measurements of elapsed time. Another source of confusion is that the official documentation for these API calls does not give 
developers an example of how to use them to obtain elapsed time measurements. Also, largely undocumented is the fact that 
since their original introduction, the implementation of the QueryPerformanceCounter and QueryPerformanceFrequency 
functions varies significantly from OS release to release, a topic that it will be necessary to return to later in this article.  

 

http://msdn.microsoft.com/en-us/library/ms724390(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724394(VS.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/09/02/459952.aspx
http://msdn.microsoft.com/en-us/library/ms725473(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644905(v=VS.85).aspx
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illustrates the calculation of CPU time based on this sampling of the processor execution state as 

reported in the Performance tab of the Windows Task Manager.  

 

FIGURE 1. THE PERFORMANCE TAB OF THE WINDOWS TASK MANAGER REPORTS PROCESSOR UTILIZATION BASED ON SAMPLING THE 

PROCESSOR EXECUTION STATE ONCE EVERY QUANTUM, APPROXIMATELY 64 TIMES PER SECOND. 

When the periodic clock interrupt occurs, the OS Scheduler performs various tasks, including adjusting 

the dispatching priority of threads that are currently executing with the intention of stopping the 

progress of any thread that has exceeded its time slice. Using the same high priority OS Scheduler clock 

interrupt that is used for CPU accounting to implement processor time-slicing is the reason the interval 

between Scheduler interrupts is often known as the quantum. At one time in Windows NT, the quantum 

between clock interrupts was set based on the speed of the processor; the faster the processor the 

shorter the quantum interval and the more frequently the OS Scheduler would gain control. Today, 

however, the quantum value is constant across processor hardware. 

Another measurement function that is performed ōȅ ǘƘŜ h{ {ŎƘŜŘǳƭŜǊΩǎ ŎƭƻŎƪ ƛƴǘŜǊǊǳǇǘ is to take a 

sample of the length of the processor Ready queue that contains threads that are queued for execution. 

The System\Processor Queue Length counter in Perfmon is an instantaneous counter that reflects the 

ƭŀǎǘ ƳŜŀǎǳǊŜƳŜƴǘ ǘŀƪŜƴ ōȅ ǘƘŜ h{ {ŎƘŜŘǳƭŜǊΩǎ ŎƭƻŎƪ ƛƴǘŜǊǊǳǇǘ service routine of the current number of 

Ready threads waiting in the OS Scheduler queue. Thus, the System\Processor Queue Length counter 

represents a singleton observation, and needs to be interpreted with that in mind.  
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The processor Queue Length metric is sometimes subject to anomalies due to the kind of phased 

behavior you can often see on an otherwise idle system.2 Even on a mostly idle Windows system, a 

sizable number of threads can be observed effectively waiting on the same clock interrupt (typically, 

waking up once per second to look for some changed state). When Perfmon is running, one of these 

periodically awaking threads happens to be the Perfmon measurement thread, often also set to cycle 

once per second. This situation is depicted in Figure 2a, showing the state of the machine at the time the 

h{ {ŎƘŜŘǳƭŜǊΩǎ ǇŜǊƛƻŘƛŎ Ŏƭƻck interval fires.  

FIGURE 2A. PROCESSOR QUEUE LENGTH MEASUREMENTS IN WINDOWS ARE SUBJECT TO AN ANOMALY DUE TO THE άCLUMPINGέ 

BEHAVIOR OF THREADS WAITING ON TIMER INTERRUPTS OFTEN OBSERVED IN AN OTHERWISE IDLE MACHINE. A SIZABLE NUMBER OF 

THREADS CAN OFTEN BE FOUND WAITING ON THE SAME TIMER INTERRUPT. TYPICALLY, THESE ARE WORKER THREADS DESIGNED TO WAKE 

UP ONCE PER SECOND TO LOOK FOR SOME CHANGE IN MACHINE OR APPLICATION STATE. AS ILLUSTRATED, THE PERFMON MEASUREMENT 

THREAD, CYCLING ONCE PER SECOND, IS OFTEN ONE OF THESE SLEEPING THREADS. THE DRAWING DEPICTS THE OS SCHEDULERΩS 

PERIODIC CLOCK INTERVAL FIRING, WHICH SERVES TO UPDATE THE SYSTEM CLOCK, WHICH WILL THEN WAKE UP ANY SLEEPING THREAD 

WHOSE SLEEP TIMER HAS EXPIRED.  

When the clock interrupt updates the current Windows system clock value, the OS transitions any 

waiting threads whose elapsed sleep timer has expired to the Ready state, as depicted in Figure 2b. On 

an idle system, sleeping threads tend to clump together, such that a bunch of them are awakened by the 

same timer interrupt. These timer-activated threads wake up, discover rather quickly that the state 

change they are checking for has not occurred, and then quickly go back to sleep. TƘŜ h{ {ŎƘŜŘǳƭŜǊΩǎ 

Ready queue is ordered by priority, so the high priority Perfmon measurement thread sorts to the top of 

the Ready queue, as illustrated in Figure 2b.  

                                                           
2
 ¢ƘŜǎŜ ŀƴƻƳŀƭƛŜǎ ǿŜǊŜ ŦƛǊǎǘ ǊŜǇƻǊǘŜŘ ƛƴ ŀ ǇŀǇŜǊ ŜƴǘƛǘƭŜŘ άInterpreting Windows NT Processor Queue Length 

Measurementsέ ōȅ 5ƛƴƎΣ ŜǘΦ ŀƭΦΣ ǇǳōƭƛǎƘŜŘ ƛƴ /aD Proceedings, 2002.  

http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6
http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6
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FIGURE 2B. AFTER THE OS SCHEDULERΩS CLOCK INTERRUPT HANDLER UPDATES THE SYSTEM CLOCK VALUE, THE PERFMON 

MEASUREMENT THREAD TRANSITIONS TO THE READY STATE BECAUSE ITS SLEEP TIMER HAS EXPIRED. BECAUSE THE PERFMON 

MEASUREMENT THREAD EXECUTES AT A HIGH PRIORITY, IT SORTS TO THE TOP OF THE SCHEDULERΩS QUEUE OF READY THREADS. AS 

ILLUSTRATED, THE CLOCK INTERRUPT MAY ALSO SERVE TO AWAKEN A NUMBER OF OTHER SLEEPING THREADS AT THE EXACT SAME TIME. 

The Perfmon measurement thread executes at a high priority level, so it is scheduled for execution 

ahead of any other User mode threads that were also awakened by the same Scheduler clock tick, as 

illustrated in Figure 2b. When the clock interrupt handler completes its processing, including performing 

its CPU usage accounting functions, the Perfmon measurement thread is ready to execute next. The 

effect is that at the time the Processor ready queue length is measured, there are likely to be a 

disproportionately high number of Ready Threads, as depicted in Figure 2c.  
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FIGURE 2C. WHEN THE CLOCK INTERRUPT HANDLER COMPLETES ITS PROCESSING, INCLUDING PERFORMING ITS CPU USAGE ACCOUNTING 

FUNCTIONS, THE PERFMON MEASUREMENT THREAD EXECUTES NEXT. IT CAPTURES A VALUE FOR THE SYSTEM\ PROCESSOR QUEUE 

LENGTH COUNTER THAT IS DISPROPORTIONATELY HIGH DUE THE άCLUMPINGέ BEHAVIOR OBSERVED ON RELATIVELY IDLE MACHINES. 

¢ƘŜ ǊŜǎǳƭǘ ƻŦ ǘƘƛǎ άŎƭǳƳǇƛƴƎέ ōŜƘŀǾƛƻǊ ƛǎ ǘƘŀǘ ǘƘŜ ǇŜǊƛƻŘƛŎ h{ {ŎƘŜŘǳƭŜǊ ƛƴǘŜǊǊǳǇǘ ǘƘŀǘ ǳǇŘŀǘŜǎ ǘƘŜ 

system Time of Day clock, has a tendency to wake a bunch of sleeping threads up at the exact same 

time. The awakened threads then flood the OS dispatching queue. If one of these threads is the Perfmon 

measurement thread that is responsible for gathering the Processor Queue Length measurement, it sees 

ŀƴ ŜƭƻƴƎŀǘŜŘ ǉǳŜǳŜΦ ¢Ƙƛǎ άŎƭǳƳǇƛƴƎέ ōŜƘŀǾƛƻǊ Ŏŀƴ Ŝŀǎƛƭȅ Řƛǎǘort the measurements Perfmon gathers. 

Compared to the modeling assumption where processor scheduling is subject to random arrivals, one 

observes a disproportionate number of Ready Threads waiting for service, even (or especially) when the 

processor itself is not very busy overall. 

This anomaly is best characterized as a low-utilization effect that perturbs the measurement when the 

machine is loafing. It generally ceases to be an issue when processor utilization climbs or there are more 

processors available on the machine. But this bunching of timer-based interrupts remains a serious 

concern, for instance, whenever Windows is running as a guest virtual machine under VMware or Hyper-

V. Another interesting side discussion is how this clumping of timer-based interrupts interacts with 

power management, but I do not intend to venture further into that subject here. 

Sampling. To summarize, the CPU utilization measurements at the system, process and thread level in 

Windows are based on a sampling methodology. Similarly, the processor queue length is also sampled. 

Like any sampling approach, the data gathered is subject to typical sampling errors, including  

¶ accumulating a sufficient number of sample observations to be able to make a reliable statistical 

inference about the underlying population, and 
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¶ ŜƴǎǳǊƛƴƎ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜƴΩǘ ǎƻǳǊŎŜǎ ƻŦ ǎŀƳǇƭƛƴƎ ŜǊǊƻǊ ǘƘŀǘ ŎŀǳǎŜǎ ǎǳō-classes of the underlying 

population to be under or over-sampled systematically 

So, these CPU measurements face familiar issues with regard to sampling size and the potential for 

systematic sampling bias, as well as the usual difficulty in ensuring that the sample data is actually 

representative of the underlying population (something known as non-sampling error). For example, the 

interpretation of the CPU utilization data that Perfmon gathers at the process and thread level is subject 

to limitations based on a small sample size for collection intervals less than, say, 15 seconds. At one 

minute intervals, there are enough samples to expect accuracy within 1-2%, a reasonable trade-off of 

precision against overhead. Over even longer measurement intervals, say 5 or 10 minutes, the current 

sampling approach leads to minimal sampling error, except in anomalous cases where there is some 

other source of systematic under-sampling ƻŦ ǘƘŜ ǇǊƻŎŜǎǎƻǊΩǎ ŜȄŜŎǳǘƛƻƴ ǎǘŀǘŜΦ    

Small sample size is also the reason that Windows does not currently permit Perfmon to gather 

performance data at intervals more frequent than once per second. Running performance data 

collection at intervals of 0.1 seconds, for example, the impact of relying on a very small number of 

processor execution state samples is quite evident. At 0.1 second intervals, processor times are 

calculated based on just 5 or 6 samples per interval. If you are running a micro-benchmark and want to 

access the same Thread\% Processor Time counters that Perfmon uses at 0.1 second intervals, you are 

looking for trouble. Under these circumstances, the % Processor Time measurements lose their 

resemblance to a continuous function over time.  

An event -driven approach to measur ing processor execution state . 

The limitations of the legacy approach to measuring CPU busy in Windows and the need for more 

precise measurements of CPU utilization are recognized in many quarters across the Windows 

development organization at Microsoft. The legacy sampling approach is doubtless very efficient, and 

ǘƘƛǎ ƳŜŀǎǳǊŜƳŜƴǘ ŦŀŎƛƭƛǘȅ ǿŀǎ ŘŜŜǇƭȅ ŜƳōŜŘŘŜŘ ƛƴ ǘƘŜ h{ ƪŜǊƴŜƭΩǎ {ŎƘŜŘǳƭŜǊ ŦŀŎƛƭƛǘȅΣ ŀ ŎƘǳƴƪ ƻŦ ŎƻŘŜ 

that is very risky to tamper with. But, for example, more efficient power management, something that is 

crucial for battery-powered Windows devices, strongly argues for an event-driven alternative. You do 

not want the OS to wake up from a low power state regularly on an idle machine just to perform its CPU 

usage accounting duties, for example.  

A straightforward alternative to periodically sampling the processor execution state is to measure the 

time spent in each processor state directly. This is accomplished by instrumenting the phase state 

transitions themselves. Processor state transitions in Windows are known as context switches. A context 

switch occurs in Windows whenever the processor switches the processor execution context to run a 

different thread. Processor state transitions also occur as a result of high priority Interrupt Service 

Routines (ISRs) gaining control following a device interrupt, as well as the Deferred Procedure Calls 

(DPCs) that ISRs schedule to complete the interrupt processing. By recording the time that each context 

switch occurs, it is possible to construct a complete and an accurate picture of CPU consumption.3 

                                                           
3
 See a two-part article in MSDN Magazine, entitled ά/ƻǊŜ h{ Events in Windows 7Σέ ǿǊƛǘǘŜƴ ōȅ LƴǎǳƴƎ tŀǊƪ ŀƴŘ !ƭŜȄ 

Bendetovers and published beginning in September 2009. The authors are, respectively, the architect and lead developer of the 

http://msdn.microsoft.com/en-us/magazine/ee412263.aspx
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It helps to have a good, general understanding of thread scheduling in the OS in order to interpret this 

stream of events. Figure 3 is a diagram depicting the state machine associated with thread execution. At 

any point in time, a thread can be in only one of the three states indicated: Waiting, Ready, or Running. 

The state transition diagram shows the changes in execution state that can occur. A Waiting thread is 

usually waiting for some event to occur, perhaps a Wait timer to expire, an IO operation to complete, a 

mouse or keyboard click that signals user interaction with the application, or a synchronization event 

from another thread that indicates it is OK to continue processing.  

! ǘƘǊŜŀŘ ǘƘŀǘ ƛǎ wŜŀŘȅ ǘƻ Ǌǳƴ ƛǎ ǇƭŀŎŜŘ ƛƴ ǘƘŜ 5ƛǎǇŀǘŎƘŜǊΩǎ wŜŀŘȅ vǳŜǳŜΣ ǿƘƛŎƘ ƛǎ ƻǊŘŜǊŜŘ ōȅ ǇǊƛƻǊƛǘȅΦ 

When a processor becomes available, the OS Scheduler selects the highest priority thread on the Ready 

Queue and schedules it for execution on that processor. Once it is running, a thread remains in the 

Running state until it completes its execution cycle and transitions back to the Wait state. An executing 

thread can also be interrupted because a higher priority execution unit needs to run (this is known as 

preemptive scheduling) or it is interrupted by the OS Scheduler because its time-slice has expired. A 

Running thread can also be delayed because of a page fault, accessing data or an instruction in virtual 

memory that is not currently resident in physical memory. These thread execution time delays are often 

referred to as involuntary waits.  

Wait Ready Running

Initial Scheduling Delay

Execution Time Delays

Completed

Ready 
Queue

 

FIGURE 3. A STATE MACHINE FOR THREAD EXECUTION. 

Figure 4 associates these thread execution state transitions with the ETW events that record when these 

transitions occur. The most important of these is the CSwitch event record that is written on every 

processor context switch. The CSwitch event record indicates the thread ID of the thread that is entering 

                                                                                                                                                                                           
ETW infrastructure. The article provides a conceptual overview describing how to use the various OS kernel events to 
reconstruct a state machine for processor execution, along with other diagnostic scenarios. Park and Bendetovers ǊŜǇƻǊǘΣ άLƴ 
state machine construction, combining Context Switch, DPC and ISR events enables a very accurate accounting of CPU 
ǳǘƛƭƛȊŀǘƛƻƴΦέ 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa964744(v=vs.85).aspx


Measuring processor utilization in Microsoft Windows Page 9 
 

the Running state (the new thread id), the thread ID that was displaced (the old thread ID), and provides 

the Wait Reason code associated with an old thread ID that is transitioning from Running back to the 

Wait state. The processor number indicating which logical CPU has undergone this state change is 

provided in an ETW_Buffer_Context structure associated with the ETW standard record header. Thread 

0 from Process 0 indicates the Idle thread, which is dispatched on a processor whenever there are no 

Ready threads waiting for execution. While a thread other than the LŘƭŜ ǘƘǊŜŀŘ ƛǎ άŀŎǘƛǾŜΣέ ǘƘŜ /t¦ ƛǎ 

considered busy.  

Conceptually, a context switch event adheres to a state switch pattern, with a time stamp identifying 

when the context switch occurred. The CPU time of a thread is the amount of time it spends in the 

Running state. It is measured using the CSwitch events that show the thread transitioning from Ready to 

the Running state and the CSwitch events that show that thread transitioning back from the Running 

state to Waiting. To calculate processor busy, you summarize the amount of time each processor spends 

when the Idle thread is active and subtract from 100% over the measurement interval. 

Wait Ready Running

Initial Scheduling Delay

Execution Time Delays

Completed

Ready 
Queue

CSw it c h(in,é)ReadyThread

Priority ® 

CSw it c h(,out,WaitReason,é)

 

FIGURE 4. THE STATE TRANSITION DIAGRAM FOR THREAD EXECUTION, INDICATING THE ETW TRACE EVENTS THAT MARK THREAD STATE 

TRANSITIONS. 

One complication in this approach is that the ETW infrastructure does not guarantee delivery of every 

event to a Listener application. If the Listener application cannot keep up with the stream of events, 

then ETW will drop memory-resident buffers filled with events rather than queue them for delivery 

later. CSwitch events can occur at very high rates, 20,000-40,000 times per second per CPU are not 

unusual on busy machines, so there is definitely potential to miss enough of the context switch events 

to bias the calculations that result. In practice, handling the events efficiently in the ETW Listener 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363716(v=VS.85).aspx
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application and making appropriate adjustments to the ETW record buffering options can be used to 

minimize the potential for missing events. 

To see this event-driven processor execution state measurement facility at work, access the Resource 

Monitor application (resmon.exe) that is available beginning in Vista and Windows Server 2008. 

Resource Monitor can be launched directly from the command line, or from either Performance Monitor 

plug-in or Task Manager Performance tab. Figure 5 displays a screen shot that shows Resource Monitor 

in action on a Windows 7 machine, calculating CPU utilization over the last 60 seconds of operation, 

breaking out that utilization by process. The CPU utilization measurements that ResMon calculates are 

based on the context switch events. These measurements are very accurate, about as good as it gets 

from a vantage point inside the OS. 

 

FIGURE 5. THE WINDOWS 7 RESOURCE MANAGER APPLICATION. 

The Resource Monitor measures CPU busy in real time by listening to the ETW event stream that 

generates an event every time a context switch occurs. It also produces similar reports from memory, 

disk, and network events.  

To summarize these developments, this trace-driven measurement source positions the Windows OS so 

it could replace its legacy CPU measurement facility with something more reliable and accurate 

sometime in the near future. Unfortunately, converting all existing features in Windows, including 

Perfmon and Task Manager, to support the new measurements is a big job, not without its 

complications and not always as straightforward as one would hope. But we anticipate future versions 
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of the Windows OS will adopt an accurate, event-driven approach to measuring processor utilization, 

ultimately replacing the legacy sampling approach that Task Manager and Perfmon rely on today.  

Using xperf to analyze CSwitch events  

The same CPU busy calculations that the Resource Manager in Windows 7 makes can also be performed 

after the fact using the event data from ETW. This is the technique used in the Windows Performance 

Toolkit (WPT, but which is better known around Microsoft as xperf), for example, to calculate CPU usage 

metrics.  

Once you have downloaded and installed the Windows Performance Toolkit, you can launch a basic ETW 

collection session using the following xperf command: 

xperf -on DiagEasy 

Then, after you have accumulated enough data, issue another command to stop tracing and capture the 

event stream to a file: 

xperf -d cputrace.etl 

Next, process the cputrace.etl file using the xperfview app. After the trace file is loaded, xperfview 

provides visualizations that are very similar to ResMon. See Figure 6 for an example. 

http://msdn.microsoft.com/en-us/performance/default.aspx
http://msdn.microsoft.com/en-us/performance/default.aspx
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FIGURE 6. CPU UTILIZATION GRAPHS IN XPERFVIEW, BASED ON ETW CONTEXT SWITCH EVENT DATA GATHERED WITH THE XPERF UTILITY. 

ADDITIONAL ISR AND DPC EVENTS ARE USED TO CALCULATE THE AMOUNT OF TIME DEVICE DRIVERS SPEND PROCESSING INTERRUPTS. 

Figure 6 illustrates several of the CPU utilization graphs that xperfview creates from the context switch 
event stream. To help make the graph more readable, I filtered out Idle time calculation for all but two 
of the logical processors on this machine. (The machine illustrated has 8 logical CPUs.) To gain insight 
into what high priority Interrupt Service Routines (ISRs) and DPCs are running, ISR and DPC events 
should also be gathered, which the DiagEasy event profile in xperf does automatically. (Windows device 
driver developers are very interested in them. For an example, see this blog posting discussing using the 
xperf ETW utility to capture CPU consumption by the TCP/IP network driver stack.)  

http://msdn.microsoft.com/en-us/library/aa964780(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964748(v=VS.85).aspx
http://blogs.msdn.com/b/ddperf/archive/2008/06/10/mainstream-numa-and-the-tcp-ip-stack-part-i.aspx
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With xperfview, you can also request a Summary Table which displays CPU usage by process (and 

thread) by right-clicking on the CPU Usage graph and accessing the pop-up context menu. An example of 

the CPU Scheduling Aggregate Summary Table is illustrated in Figure 6. It is similar to the one ResMon 

produces. The data here was gathered while running a multi-threaded CPU soaker program called 

ThreadContentionGenerator while ResMon was also active. You can see that the calculation in Figure 7 

roughly mirrors the results shown in Figure 5 for ResMon, allowing for some variation that is to be 

expected since the intervals themselves are not identical. The xperf interval shown in Figure 6 is 

approximately 500 seconds long, while ResMon maintains a rolling window that is only 60 seconds in 

duration. The ResMon screen shot was taken somewhere in the middle of the longer xperf tracing 

session.  

 

FIGURE 7. THE CPU SCHEDULING AGGREGATE SUMMARY TABLE CALCULATED BY XPERFVIEW. THE RESULTS OF THESE CALCULATIONS 

CLOSELY RESEMBLES THE ROLLING ONE-MINUTE CALCULATION REPORTED BY THE RESOURCE MONITOR IN FIGURE 5. 

For some perspective on the volume of trace events that can be generated, the binary .etl trace file 

produced in this example was approximately 325 MB on disk for a DiagEasy trace session that ran for 

more than ten minutes. Running with the xperf defaults, I received a notification when the trace session 

closed that three ETW 64K buffers of data were dropped during the trace because xperf was unable to 

keep pace with processing the event stream in real-time. 

¢ƘŜ /ƻƴǘŜȄǘ {ǿƛǘŎƘ ŜǾŜƴǘ ŀƭǎƻ ǇǊƻǾƛŘŜǎ ǘƘŜ ƻƭŘ ǘƘǊŜŀŘΩǎ ²ŀƛǘ wŜŀǎƻƴ ŎƻŘŜΣ ǿƘƛŎƘ ƘŜƭǇǎ ȅƻǳ ǘƻ 

understand why the sequence of thread scheduling events occurred. For reference, a Windows context 

switch is defined here, while the contents of the ETW (Event Tracing for Windows) context switch event 

record are defined here, including a list of the current thread WaitReason codes.  

http://msdn.microsoft.com/en-us/library/ms682105(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964744(VS.85).aspx


Measuring processor utilization in Microsoft Windows Page 14 
 

Note that you can measure CPU queue time accurately from the ETW events, an important indicator of 

processor contention when the processor becomes saturated. As illustrated in Figure 4, the transition 

from the Wait state to the Ready state is marked by a ReadyThread event record. The time between the 

ReadyThread event and a subsequent CSwitch event marking its transition to Running is one form of 

CPU Queue time. A second form of CPU queue time is the time between a CSwitch(ΧΣƻǳǘΣ²ŀƛǘwŜŀǎƻƴΣΧ) 

where the WaitReason is either a Preempt or time-slice quantum expiration and a subsequent re-

dispatch. Both forms of CPU queue time can be measured accurately using ETW. 

When precision in understanding patterns of CPU consumption is required, post-processing the ETW 

context switching event stream is a much better way to proceed than attempting to use the Windows % 

Processor Time performance counters. Measuring CPU consumption from the context switch events is 

considerably more precise than, for example, the Windows performance counter data available in 

Perfmon that report processor utilization at the system and process level based on processor state 

sampling. Such high precision measurements are not always required, of course, and processing the 

ETW context switching event stream is relatively expensive due to the extremely high volume of trace 

data that you must deal with.  

Measuring thread execution state.  

Besides measuring processor utilization at the system level, the stream of context switch events can also 

be re-constructed to drill into CPU consumption at the process and thread level. An exemplary example 

of this approach is the ±ƛǎǳŀƭ {ǘǳŘƛƻ tǊƻŦƛƭŜǊΩǎ Concurrency Visualizer, available in Visual Studio 2010. 

(For reference, see άPerformance Tuning with the Concurrency Visualizer in Visual Studio 2010 in the 

Visual Studio 2010 ProfilerΣέ an MSDN Magazine article ǿǊƛǘǘŜƴ ōȅ ǘƘŜ ǘƻƻƭΩǎ ǇǊƛƴŎƛǇŀƭ ŀǊŎƘƛǘŜŎǘΣ IŀȊƛƳ 

Shafi.)  The Concurrency Visualizer gathers Context Switch events to calculate processor utilization for 

the application being profiled.  

The VS Concurrency Visualizer creates a system-level CPU Utilization View with an interesting twist ς the 

view pivots based on the application you are profiling, a perspective that matches that of a software 

performance engineer engaged in a performance investigation. Based on the sequence of context switch 

trace events, the Concurrency Visualizer calculates processor utilization by the process, aggregates it for 

the current selection window, and displays it in the CPU Utilization View. In the CPU Utilization View, all 

other processor activity for processes (other than one being profiled) is lumped together under a 

ŎŀǘŜƎƻǊȅ ŎŀƭƭŜŘ άhǘƘŜǊ tǊƻŎŜǎǎŜǎ.έ {ȅǎǘŜƳ-ǇǊƻŎŜǎǎŜǎ ŀƴŘ ǘƘŜ άLŘƭŜ ǇǊƻŎŜǎǎΣέ ǿƘƛŎƘ ƛǎ ŀ ōƻƻƪƪŜŜǇƛƴƎ 

mechanism, not an actual process that is dispatched, are also broken out separately. See Dr. ShafiΩs 

article for more details. (For reference, Figure 12 below illustrates the CPU Utilization View.) 

The Concurrency VisualizerΩǎ primary focus is on being able to reconstruct the sequence of events that 

ƛƳǇŀŎǘ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŜȄŜŎǳǘƛƻƴ progress. The ConcurǊŜƴŎȅ ±ƛǎǳŀƭƛȊŜǊΩǎ ¢ƘǊŜŀŘǎ ±ƛŜǿ is the main 

display showing an ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŜȄŜŎǳǘƛƻƴ ǇŀǘƘ. The view here is of execution progress on a thread by 

thread basis. For each thread in your application, the Concurrency Visualizer shows the precise 

sequence of context switch events that occurred. These OS Scheduler events ǊŜŦƭŜŎǘ ǘƘŀǘ ǘƘǊŜŀŘΩǎ 

execution state over time. See Figure 8 for an example of this view. 

http://msdn.microsoft.com/en-us/magazine/ee336027.aspx
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 FIGURE 8. SCREEN SHOT OF THE CONCURRENCY VISUALIZER ILLUSTRATING THREAD PREEMPTION BY A HIGHER PRIORITY SYSTEM 

ROUTINE. 

Figure 8 shows the execution path of six application threads, a Main thread, a generic worker thread, 

and 4 CLR (the Common Language Runtime for .NET languages) worker threads that the application 

created by instantiating a .NET ThreadPool object. (There were originally more threads than this, but I 

chose to hide those that were inactive over the entire run.) For each thread, the execution state of the 

thread ς whether it is running or whether it is blocked ς is indicated over time.  

The upper half of the display is a timeline that shows the execution state of each thread over time. The 

execution progress of each thread display is constructed horizontally from left to right from rectangles 

that indicate the start and end of a particular thread state. An interval when the thread was running 

shows as green. An interval where the thread is sleeping is shown in blue. A ready thread that is blocked 

from executing because a higher priority thread is running is shown in yellow. (This state is labeled 

άǇǊŜŜƳǇǘƛƻƴΦέύ ! ǘƘǊŜŀŘ ƛƴ ŀ ǎȅƴŎƘǊƻƴƛȊŀǘƛƻƴ ŘŜƭŀȅ ǿŀƛǘƛƴƎ ƻƴ ŀ ƭƻŎƪ ƛǎ visualized as red. 

On the lower left of the display is a Visible Timeline Profile. This summarizes the state of all threads that 

are visible within the selected time window. In the screen shot in Figure 8, I have zoomed into a time 

http://msdn.microsoft.com/en-us/library/3dasc8as(VS.100).aspx
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window that is approximately 150 milliseconds wide. During that interval, the threads shown were in a 

state where they were actively executing instruction only 11% of the time. For 25% of the time interval, 

threads were blocked waiting on a lock. Finally, there is a tabbed display at the lower right. If you click 

ƻƴ ǘƘŜ άtǊƻŦƛƭŜ wŜǇƻǊǘέ ǘŀōΣ ŀ ƘƛǎǘƻƎǊŀƳ ŘƛǎǇƭŀȅǎ ǘƘŀǘ ǎǳƳƳŀǊƛȊŜǎ ǘƘŜ ŜȄŜŎǳǘƛƻƴ ǎǘŀǘŜ ƻŦ ŜŀŎƘ ƛƴŘƛǾƛŘǳŀƭ 

thread over the time window. In the screen ǎƘƻǘΣ L ƘŀǾŜ ŎƭƛŎƪŜŘ ƻƴ ǘƘŜ ά/ǳǊǊŜƴǘ ǎǘŀŎƪέ ǘŀō ǘƘŀǘ ŘƛǎǇƭŀȅǎ 

the call stack associated with the ETW context switch event. If the thread is blocked, the call stack 

indicates where in the code the thread will resume execution once it unblocks. We will drill into that call 

stack in a moment. 

Note: The Threads View also displays call stacks from processor utilization samples that ETW gathers on 

a system-wide basis once per millisecond. Call-stacks samples are visible during any periods when the 

thread is executing instructions (and ETW execution sampling is active).4 

The Concurrency Visualizer screen shot in Figure 8 illustrates the calculation of ŀ ǊǳƴƴƛƴƎ ǘƘǊŜŀŘΩǎ /t¦ 

queuing delay. Thread 6920, which happens to be a CLR thread pool worker thread, is shown at a point 

in time where it was preempted by a higher priority task. The specific delay that I zoomed in on in the 

screen shot is preemption due to the scheduling of a high priority LPC or ISR ς note this category in the 

Concurrency Visualizer also encompasses assorted APCs and DPCs. In this specific example, execution of 

Thread 6920 was delayed for 0.7718 milliseconds. According to the trace, that is the amount of time 

between Thread 6920 being preempted by a high priority system routine and a subsequent context 

switch when the ready thread was again re-dispatched.  

The tool also displays the call stack of the preempted thread. The call stack indicates that the CLRΩǎ 

garbage collector (GC) was running at the time that thread execution was preempted. From the call 

stack, it looks like the GC is sweeping the Large Object Heap (LOH), trying to free up some previously 

allocated virtual memory. This is not an opportune time to get preempted. You can see that one of the 

other CLR worker threads, Thread 6420, is also delayed. Notice from the color coding that Thread 6420 

is delayed waiting on a lock. Presumably, one of the other active CLR worker threads in the parent 

process holds the lock that Thread 6420 is waiting for.  

¢Ƙƛǎ ƛǎ ƻƴŜ ƻŦ ǘƘƻǎŜ ά!Ƙŀέ ƳƻƳŜƴǘǎΦ LŦ ȅƻǳ click on the synchronization delay that Thread 6420 is 

experiencing, as illustrated in Figure 9, you can see that the lock that Thread 6420 is trying to acquire is, 

in fact, currently held by Thread 6920, the one that was preempted somewhere in the midst of running 

garbage collection. /ƭƛŎƪƛƴƎ ƻƴ ǘƘŜ ǘŀō ǘƘŀǘ ǎŀȅǎ ά/ǳǊǊŜƴǘ {ǘŀŎƪέ όƴƻǘ illustrated) indicates that the 

duration of the synchronization delay that Thread 6420 suffered in this specific instance of lock 

contention was about 250 milliseconds.  

                                                           
4 One of the ETW OS kernel events that the Concurrency Visualizer does not analyze is the ReadyThread event. The interval 

between a ReadyThread event and a subsequent Context Switch that signals that a ready Thread is being dispatched measures 

CPU queue time delay directly. Using event data, it is possible to measure CPU queuing delays precisely. Analysis of the ETW 

kernel event stream far exceeds anything that can be done using Windows performance counters to try to estimate the impact 

of CPU queuing delays. 

http://msdn.microsoft.com/en-us/library/dd765158(VS.85).aspx


Measuring processor utilization in Microsoft Windows Page 17 
 

The scenario here shows one CLR worker thread blocked on a lock that is held by another CLR worker 

thread, which in turn finds itself being delayed due to preemptions from higher priority Interrupt 

processing. We can see that whatever high priority work preempted Thread 6920 has the side effect of 

also delaying Thread 6420, since 6420 was waiting on a lock that Thread 6920 happened to be holding at 

the time. The tool in Figure 9 displays the Unblocking stack from Thread 6920 which shows the original 

memory allocation from the Dictionary.Resize() method call being satisfied, releasing a global GC lock. 

When Thread 6920 resumed execution following its preemption, the GC operation completes, releasing 

the global GC lock. Thread 6920 continues to execute for another 25 microseconds or so, before it is 

preempted because its time slice expired. Even as Thread 6920 blocks, Thread 6420 continues to wait 

while a different CLR thread pool thread (4664) begins to execute instead. Finally, after another 25 

microseconds delay, Thread 6420 resumes execution. For a brief period both 6420 and 4664 execute in 

parallel from approximately the 7640 to 7650 microsecond milestones. (However, they are subject to 

frequent preemptions during that period of overlapped execution.)5 

                                                           
5 Welcome to the indeterminacy associated with parallel programming.  

L ǿƻƴΩǘ ǘŀƪŜ ǘƘŜ ǘƛƳŜ here to go into what this little concurrent CLR (Common Language Runtime ) thread pool application is 

doing. Suffice to say that it instantiates and references a very large Dictionary object in .NET, and I wrote it to illustrate some of 

the performance issues developers can face trying to do parallel programming, which is a topic I was blogging about at the 

time. (I should also note that the test program puts the worker threads to sleep periodically to simulate synchronous I/O waits 

to create an execution profile similar to what one could expect in processing a typical ASP.NET web request that needs to 

access an external database, an excellent idea I appropriated from a colleague, Joe Hellerstein.)  

When I first began to profile this test app using the VS Concurrency Visualizer, I was able to see blocking issues like the one 

described here where the CLR introduced synchronization and locking considerations that are otherwise opaque to the 

developer. Well, caveat emptorΣ L ǎǳǇǇƻǎŜΣ ǿƘŜƴ ƛǘ ŎƻƳŜǎ ǘƻ ǳǘƛƭƛȊƛƴƎ ǎƻƳŜƻƴŜ ŜƭǎŜΩǎ ŎƻŘŜ ŦǊŀƳŜǿƻǊƪ ƛƴ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΦ ό{ŜŜ 

Rico MariaƴƛΩǎ Performance Tidbits blog for a singular discussion of his intriguing proposal that a .NET Framework method 

provide a performance signature that would allow a developer to make an informed decision before ever calling into some 3
rd

 

ǇŀǊǘȅΩǎ ŎƻŘŜΦ !ƭŀǎΣ ǎǘŀǘƛŎ ŎƻŘŜ ŀƴŀƭysis cannot be used to predict the performance of some arbitrarily complex method call 

embedded in your application, something Rico was eventually forced to concede.) 

It turns out that .NET Framework collection classes do use locks to ensure thread-safe operation in a multi-threaded program, 

ǿƘŜǘƘŜǊ ƛǘ ƛǎ ƴŜŎŜǎǎŀǊȅ ƻǊ ƴƻǘΦ {ŜŜ ǘƘŜ a{5b άThread-Safe Collectionsέ IŜƭǇ ǘƻǇƛŎ ŦƻǊ ƳƻǊŜ ƛƴŦƻǊƳŀǘƛƻƴΦ 9ŀŎƘ ǿƻǊƪŜǊ ǘƘǊŜŀŘ ƛƴ 

my test program instantƛŀǘŜŘ ŀƴŘ ŀŎŎŜǎǎŜŘ ŀ ŘŜŘƛŎŀǘŜŘ ƛƴǎǘŀƴŎŜ ƻŦ ǘƘŜ 5ƛŎǘƛƻƴŀǊȅ Ŏƭŀǎǎ ŘǳǊƛƴƎ ǇǊƻŎŜǎǎƛƴƎΣ ǎƻ ƭƻŎƪƛƴƎ ǿŀǎƴΩǘ 

necessary in this little test application. Because I had taken steps to ensure thread-safety issues would never arise in my test 

program, I was unpleasantly surprised when the tool uncovered lock contention for these Dictionary objects. Unfortunately, 

there is no way for the developer to explicitly signal the runtime that locking is not necessary. Some of the popular .NET 

Framework collection classes ς like the HashTable ς do provide a Synchronized method that exposes a lock created implicitly. 

But the Synchronized method is designed to support more complex multi-threaded access patterns, such as a multiple readers 

and writers scenario, for example. To assist in parallel programming tasks, several newer collection classes were introduced in 

the System.Collections.Concurrent bŀƳŜǎǇŀŎŜ ǘƘŀǘ ǳǎŜ άƭƻŎƪ-ŦǊŜŜέ ŀƴŘ ƻǇǘƛƳƛǎǘƛŎ ƭƻŎƪƛƴƎ ŀǇǇǊƻŀŎƘŜǎ ǘƘŀǘ ǇǊƻƳƛǎŜ better 

scalability for parallel programs. 

I eventually tweaked the test app into an especially ghoulish version I call the LockNestMonster program that uses explicit 

global locks to shine an even brighter light on these issues.  

http://blogs.msdn.com/b/ddperf/archive/2009/03/16/parallel-scalability-isn-t-child-s-play.aspx
http://blogs.msdn.com/b/ricom/
http://blogs.msdn.com/b/ricom/archive/2007/02/07/performance-signatures-cmg-2006-paper.aspx
http://msdn.microsoft.com/en-us/library/dd997305.aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.concurrent.aspx
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FIGURE 9. CLR WORKER THREAD 6420 BLOCKED BECAUSE IT IS WAITING ON A GC LOCK THAT HAPPENS TO BE HELD BY THREAD 6920, 

WHICH IS SUBJECT TO PREEMPTION BY HIGHER PRIORITY SYSTEM ROUTINES. 

Time -slicing.  

The Concurrency Visualizer also utilizes context switch events to calculate the delays a thread 

encounters during execution due to preemption, as a result of the ŜȄǇƛǊŀǘƛƻƴ ƻŦ ŀ ǘƘǊŜŀŘΩǎ ǘƛƳŜ-slice.6 In 

Figure 10, I clicked on the large yellow block on the right hand side of the execution time bar graph for 

Thread 6920 indicating another long delay. As in Figure 9, I have hidden all but the three active CLR 

thread pool threads. Using a combination of zooming to a point of interest in the event stream and 

filtering out extraneous threads, as illustrated in Figure 10, the Concurrency Visualizer is able to 

construct an execution time profile using just those events that are visible in the current time-window. 

                                                           
6 The duration of the OS Scheduler time slice being one of the few tuning adjustments available in the OS. For the 

record, I normally recommend that system administrators not fiddle with this tuning knob, unless they lots of extra 

time on their hands. This older KB article provides some flavor for what is involved. For someone that cannot resist 

the temptation to fiddle with the time-slicing tuning parameters, the  Concurrency Visualizer Threads View is the 

first Windows performance tool that can help you determine if changing the OS default time-slice value is doing 

your application any good, or harm, for that matter.  

http://support.microsoft.com/kb/111405
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Overall, the three active CLR worker threads are only able to execute 18% of the time, while they are 

delayed by synchronization 9% of the time and subject to preemption 39% of the time. (You can click on 

the Profile Report tab in the middle right portion of the display and see a profile report by thread.)  

 

FIGURE 10. USING THE CONCURRENCY VISUALIZER TO DRILL INTO THREAD PREEMPTION DELAYS. 

At the point indicated by the selection, the time-slice quantum for Thread 6920 expired and the 

Scheduler preempted the executing thread in favor of some other ready thread. Looking at the 

visualization, it should be apparent that the ready thread the Scheduler chose to execute next was 

another CLR thread pool worker thread, namely Thread 4664, which then blocked Thread 6920 from 

continuing. The tool reports that a context switch(6920, 4664) occurred, and that Thread 6920 was 

delayed for about 275 milliseconds before it resumed execution after being preempted. 

As illustrated in this example, the Concurrency Visualizer uses the ETW-based event data from a profiling 

run to construct a state machine that reflects the precise execution state of each application thread over 

the time interval being monitored. It goes considerably beyond calculating processor queue time at the 

thread level. It understands how to weave the sequence of Ready Thread and Context switch events 

together to create this execution time profile. It summarizes the profiling data, calculating the precise 

amount time of time each thread is delayed by synchronous IO, page faults (i.e., involuntary waits due 


