Measuring Processor Utilization in Windows and Windows applications
Mark B. Friedman
Demand Technology Software

Introduction.

This paper discusséise legacytechnique for measuringrocessouutilizationin Windowsthat is based

on sampling Thistechniquefor measuring processor utilization is efficient and generally adequate for

capacity planningHowever, it lacks the precision performance engineers require for application

optimization and tuning, particularly over small measurement intexvBile paper therintroduces

newer techniques for measuring processor utilization in Windows that are elrérén. The event

driven approaches are distinguished by far greater accymetgbling the reconstruction of the precise

path that threads, processesid processors take when they execuf@athering eventriven

measurement®ntails significantly higher overhead, but measurements indicate this overhead is well
GAGKAY | OOSLIilofS o62dzyRa 2y (2RlI&Qa KAIK LI2sSNBR

As of this writing, Windowsontinues to report measurements of processor utilization based on the
legacy sampling technigque. The more accurate measurements thaearedusing eversg are gaining
ground however,and can be expected to supplant the legacy measuremiaritse not o distant
future.

While computer performance junkies like maishthe prospect of obtaining more reliable and more
precise processor busy metrics, the evelniven measurements do leave several very important issues
in measuring CPU utilization unregedl. These include validity and reliability issues that arise when
Windows is running as a guest virtual machine under VMware, Zen, or-Myipat impact the accuracy
of most timerbased measurementgln an aside, mitigation techniques for avoiding sarhéhe worst
measurement anomalies associated with virtualization are discussed.)

A final topic concerns characteristics of current lte@patible processors that undermine the
rationale for using measurements of CPU busy based solely on thread exdgugowe discusshe
valueof usinginternal hardware measurements ofie processo & A Y dexebliiz0 tatet@ y
understand and improve application performand®hile wemakethe case for using internal hardware
YSFadz2NBYSyida 27F (ikrfexecid @ o adNatimork goavénhin®asures of
CPU busy, we alscknowledgesome of the currenbarriersthat advocates of this approach encounter
when they attempt to put it into practice today.

Sampling processor utilization.

The techniqueused to calculate processor utilizationWindowsis based on gatheringeriodic samples
2F (GKS LINE OS & 3 IiNegacyidcihiquzicharacierizadiby IowSoderheagielding
measurements witta reasonable degree of accuramyerthe kinds oftime intervals that computer
capacity planningfor examplerequires The sampling methodologyas originally deised 20 years ago
for Windows NTSinceone ofthe original desigrmoak of Windows NT was tachieve a high degree of

Measuring processor utilization in Microsoft Windows Pagel

hardware ndependencethe measurement methodology was also designed so that it was not
dependent on any specific set pfocessotardware measurement features

The familiar% Processor Timmuntersin Perfmonare the measurementsierived usinghis sampling

technigue. Themeasurement procedurases arOS Schedulgreriodic clock interrupt to samplde

executionstate ofthe processoionce perinterval. The periodic clock interruptashigh priority timer-

based hardware clocknterrupt that is programmed tdire 64 times per secondnceapproximately

every15.6 ms This clock interrupt is used to calibrateK S 4@ 3GSyYQa ¢AYS 2F 51 & Of
retrieved by calling th&etSystemTimé&unction.

Theoperatingi @ 3G SYQa Of 201 AYOGSNNMHzLIG NRdziAyS LISNF2N¥Ya |
current system clock value. One of those other functions is CPU accounting, which is performed by

recording the current execign state of each processor, immediately prior to the occurrence of clock

interrupt. If the processowas running the Idle loop whenthe { Q& LiileNdpRoBCAre) it is

recorded as an IdI€ime sample. If the processor sveunning some application bad, that is recorded

as aCPUWusy sample. Busy samples #nen accumulateccontinuouslyat both the thread and process

level.Since roughly 64 clock interrupts occur each second, the % Processan@aserementsre

based on samples of the processaeeution state gathered 64 times per secand.

This periodic sampling of the executistate of each processor is the source of the processor utilization
measurements at the processor, process and thread level in both Perfmon and TaskMan, as well any
numberof Windows API callhat allow applications to retrieve that measurement datigure 1

'¢KS LISNA2RAO Of 201 AYOSNNHAJ | ROLyOSa (KS aeaidsSy 0ft01 4l f dz
uses between timer interrupts bgalling theGetSystemTimeAdjustmentf)nction.

This difference between thprecisionwith which the system reports clock values and the actpahularityof system Time o

5FLe Oft201 @FfdzS dzLRIFGSa Aa (GKS a2dNDS 2F SyRf Saa 02y Fdzaiazy A
of 23 LBRahifiohif Aot the sameasamu 2y (KA A& adzo2SO00d ! y T2 NIdayfhishpfpuldrs / KSy Q2
Microsoft insider blogprobably raises as many questions as it answers. The range of comments from his readers further
illustratessomeof the confusion around this topic.

Clock and timer values in Windows are reported in a standardized hh:mm:ss format, with fractional seconds reported to seven
RSOAYlIf RAIAGADP ¢Kdzax SI OK t23A0It adAO] ¢ HoWevelkbuwitta i SY Of 20
program that spins in a loop, checking the value of the Windows Time of DaycaptiRuously you willobservethe clock

value remains stationary until it is updated during the periodic clock interrupt. When your program resumes execution

following the clocknterrupt, you willthenobservel Of 2 O & d5\6diillisecehds added 2odhié previous value of the

system clock.

' Y20KSNJ 42dzNDOS 2F O2yTdzaAz2y A& (GKS 0S6Af RSNAyHmelFdbibd 2F aead
article in the official MSDN library documentation for details.

A high resolution timefacility calledQueryPerformanceCountavas introduced in Windows 2000. The nanoéshe
QueryPerformanceCountend QueryPerformanceFreguentiyne functions that are used in obtaining high resolution clock
values in Windows reflect their origin in solving the clock resolution problem spdygificathe purpose of performance
measurementUnfortunately, theAPInames serve to obscure théieyrole in Windowsin obtainingmore precise
measurements of elapsed timAnother source of confusion is thtte official documentation for these API calbes not give
developers an example of how to use them to obtain elapsed tireasurements. Alsdargely undocumented is the fact that
since their original introductiorthe implementation of the QueryPerformanceCounter and QueryPerformanceFrequency
functions varies significantfyom OSrelease to release, a topic that it will be necessary to return to later in this article

Measuring processor utilization in Microsoft Windows Page2

http://msdn.microsoft.com/en-us/library/ms724390(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724394(VS.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/09/02/459952.aspx
http://msdn.microsoft.com/en-us/library/ms725473(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644905(v=VS.85).aspx

illustrates the calculation of CPU time based on this sampling of the processor execution state as
reported in the Performance tab of the Windows Task Manager.

"8 Windows Task Manag ‘ =NACE X

File Options View Help

Memory Physical Memory Usage History

Physical Memary (MB) System

Total 8180 Handles 124415

Cached 898 Threads 2613

Available 1417 Processes 167

Free 642 Up Time 2:08:23:30
Commit (GB) 14/ 16

Kernel Memary (MB)

Paged 394

MNonpaged 345 | ¥/ Resource Monitor... ‘

Processes: 167 CPU Usage: 65% Physical Memory: 82%
b

HGUREL. THEPERFORMANCE TAB OEWANDOWSTASKMANAGER REPORTS PRSSCIR UTILIZATION BRSON SAMPLING THE
PROCESSOR EXECUBDNE ONCE EVERANTUMAPPROXIMATEBA TIMESPER SECOND

Whenthe periodicclock interrupt occurs,ite OSScheduler performgarioustasks, including adjusting

the dispatching priority of threads that are currently executivith the intention ofstopping the

progress of any thread that has exceeded its time slice. Using the same high priority OS Scheduler clock
interrupt that is used for CPU accounting to implement processor-shaeng is the reason the interval
between Scheduler interrupts ften known as thequantum At one time in Windows NT, the quantum
between clock interruptsvas set based on the speed of the processor; the faster the processor the
shorter thequantum interval and thenore frequently the OS Scheduler would gain conffoday,

however, the quantum value is mstant across processor hardware

Another measurement function that is performédé G KS h{ { OKS R dzfio$akdna Of 2 01 A
sample of the length of the processBeadygueuethat containsthreadsthat are quewed for execution

The SystemProcessor Queue Lengthunter in Perfmons aninstantaneouscounter that reflects the

flrad YSIFadaNBYSyid Gl 1Sy o0& sénvicSroutineof theOkrénRdzhbSrey a Ot 2 O
Ready threads waiting in the OS Salled queue Thus, he SystemiProcessor Queue Lengtbunter

representsa singletorobservation, and needs to be interpreted with thatmind.

Measuring processor utilization in Microsoft Windows Page3

The processor Queue Lengthetricis sometimes subject toanomalies dudo the kind of phased
behavior you camften see on an otherwise idle systenEven on a mostly idi/indowssystem,a

sizable number of threadsan beobservedeffectivelywaiting on the same clock interruptypically
waking uponce per secondto look for some changed staté)/hen Perfmon isunning, me ofthese
periodically awaking threadsappens to béhe Perfmon measurement threadften alsoset tocyck

once per secondrhis situation is depicted in Figure, Zhowing the state of the machine at the time the
h{ { OKSRdz Sotkintervaldgelh 2 RA O Of 2

Waiting Threads Ready Threads Running Thread

sleeping [Empty] Idle thread

sleeping
sleeping -
sleeping
sleeping
sleeping
sleeping 08 Scheduler's
waiting periodic clock
waking interrupt

g (64/sec)

waiting
waiting
waiting

Yallg) Perfmon measurement thread
waiting

waiting
waiting
waiting
waiting
waiting
waiting
waiting
waiting
waiting

waiting
RGURE2A. PROCESSORUEUE LENGTH MEASURENS INVINDOWS ARE SUBJEOTAN ANOMALY DUE TEIEQCLUMPING

BEHAVIOR OF THREADSITING ON TIMER IRRRUPTSFTEN OBSERVIEDAN OTHERWISE IDUACHINEA SIZABLE NUBER OF
THREADS CAN OFTENFBEINDNVAITING ON THE SANIBMERNTERRURTTYPICALLYHESE ARE WORKEREAFS DESIGNED TO \WAK
UP ONCE PER SECOSDR@OK FOR SOME CIBANN MACHINE OR ARPATION STATAS ILLUSTRATEIHEPERFMON MEASUREMENT
THREAPCYCLINGNCE PER SECQNDOFTEN ONE OF THESEEPING THREADME DRAWING DEPICHED SSCHEDULER

PERIODIC CLOCK INFAERFIRINGVHICH SERVES TO UPBAHE SYSTEM CLOTHICH WILL THEN WAKE ANY SLEEPING TARE
WHOSE SLEEP TIMEFR EXPIRED

When the ¢ock interrupt updates the current Windows system clock value, the OS transitions any

waiting threads whose elapsed sleep timer has expired to the Ready state, as depicted in Figure 2b.

an idle systemsleeping threads tend to clump togetheuchthat a bunch of thermare awakened by the

sametimer interrupt. Thesetimer-activated threads wake up, discover rather quickly that the state

change they are checking for has not occurred, thae quickly go back to sleepKTS h { { OK S Rdzf S NI
Ready queue is ordered by prioriggthe high priority Perfmon measurement thread sorts to the top of

the Ready queueas illstrated in Figure 2b

2¢KSaS Fy2YFfASAa 4 SNB T A NEerpretiNONidRIoWE STRProegsorlQueld LEAGINI Sy G A G f S
Measurements o6& 5AYy 33 S{ @ Proteauigs?d020 f AAaKSR Ay /[aD

Measuring processor utilization in Microsoft Windows Page4

http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6
http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6

Waiting Threads Ready Threads

Running Thread

A

awakened

awakened

awakened

OS Scheduler®
Clock Interrupt
Handler

awakened

awakened

awakened

Y

/

awakened

(Ordered by Priority)

Perfmon measurement thread

HGURE2B. AFTER'HEOSSCHEDULER CLOCK INTERRUANDLER UPDATES BNBTEM CLOCK VAITHEPERFMON
MEASUREMENT THREARANSITIOSTO THEREADY STATBECAUSHS SLEEP TIMER HEX®IREBECAUSE THEERFMON
MEASUREMENT THREABEUTES AT A HIGHOMTYITSORTS TO THE TOPTBESCHEDULER QUEUE AREADY THREADAS
ILLUSTRATEDHE CLOCK INTERRMRYALSCBERVE TO AWAKEN AWBER OF OTHER SLEBPTHREADS AT THRER SAME TIME

The Perfmon measurement thread executes &ighpriority level, so it is scheduled for execution

ahead of any other Usenode threads that were also awakenbgthe same Scheduler clock ticks
illustrated in Figure 2 When the clock interrupt handler completes its processing, including performing
its CPU usage accounting functions, the Perfmon measurement thread istoeaxiycute nextThe

effect is that at the time the Processor ready queue length is measured, there are likely to be a

disproportionatelyhighnumberof Ready Threadss depicted in Figure 2c.

Measuring processor utilization in Microsoft Windows

Page5

Waiting Threads Ready Threads Running Thread

ready Perfmon
ready measurement
ready thread
ready
ready
ready
Captures the
System\Processor Queue Length
counter

FGURE2C. WHEN THE CLOCK INRERT HANDLER COMA.ETTS PROCESSINGLUDING PERFORMINSCPUWJSAGE ACCOUNTING
FUNCTIONSHEPERFMON MEASUREMEMREAD EXECUTES NEXTAPTURES A VALORAHESYSTEMPROCESSGRUEUE

LENGTH COUNTERAT IDISPROPORTIONATEIGH DUE THEELUMPIIGE BEHAVIOR OBSERVEDRENATIVELY IDLE MRS

¢CKS NBadzZ G 2F (GKA& aOfdzYLIAy3é O6SKIFPA2NI A& (GKFG (K
system Time of Day clock, has a tendency to wake a bunch of sleeping thpesgtdbe exact same

time. The awakened threads then flood the OS dispatching queue. If one of these threads is the Perfmon
measurement thread that is responsible for gathering the Processor Queue Length measurement, it sees
Fy St2y3FaGSR 1jdzSdzSd ¢ KA a aithé dedduikmests Pedn®ikdat@eks2 NJ Ol y
Gompared to themodeling assumptiomhere processor scheduling is subject to random arrjwade

observesa disproportionate number of Ready Threads waiting for service, @rezspeciallyyvhen the

processor itselfs not very busy overall

This anomalys best characterized as w-utilization effectthat perturbs the measuremenwhenthe

machine is loafing. It generally ceases to be an issue when processor utilizationcelimdae are more
processoravailableon the machineButthis buncling of timer-based interruptgemains aserious

concern, for instance, whenever Windows is running as a guest virtual machine under VMware er Hyper
V.Another interesting side discussion is how this clumping of tibaesed inerrupts interacts with

power management, but | do nattend to venture further into that subject here

Sampling To summarize, the CPU utilization measuremeitihe system, process and thread leirel
Windows are based on a sampling methodoldgiynilaty, the processor queue lengthalso sampld.
Like any sampling approadie data gathered is subject to typical sampling errors, including

9 accumulatinga sufficient number ofample observations to be able to makeeliable statistical
inferenceabou the underlying populationand

Measuring processor utilization in Microsoft Windows Page6

f Syadz2NAy3 GKFEG GKSNB | NBy Qi &dadseshBile uiidlyingl Y LI Ay 3
populationto be under or oversamged systematically

So, these CPU measurements face familiar issuesegtrd tosampling e and the potential for

systematic sampling biaas well ashe usual difficultyin ensuring that thesample datas actually

representativeof the underlying populationspmething known ason-sampling erra). For example, the

interpretation of the CPU utilization data that Perfmon gathers at the process and thread level is subject

to limitations based on a small sample size for collection intervals lessghari5 secondsAt one

minute intervals, there arenough samples to expect accuracy withid%, a reasonable tradeff of

precision against overhead. Over even longer measurement intervals, say 5 or 10 minutes, the current
sampling approach leads to mimal sampling errgrexcept in anomalous cases whéhere issome

other source of systematic undesamplingg ¥ G KS LINR OSaaz2Nna SESOdziAzy &adl

Small ample size is also the reason thindowsdoes not currently permit Perfmon to gather
performancedata at intervals more frequent than once per secoRdnning performance data
collection at intervals of 0.1 seconds, for example, the impact of relying on a very small number of
processor execution state samples is quite evident. At 0.1 second intgm@tessor times are
calculated based ojust5 or6 samples per intervallf you are running a micieenchmark andvant to
access thsameThread% RocessofTime counterghat Perfmonuses al.1 second intervalgou are
looking for trouble. Under these circumstances, the % Processor Time measurdosetieir
resemblance t@ continuous functiomver time

An event-driven approach to measuring processor execution state .

The limitations of théegacyapproach to measuring CPU busy in Windows and the need for more

precise measurements of CPU utilizatame recognized in many quarters across the Windows

development organizatioat Microsoft. The legacy sampling approach is doubtless very efficiamt

GKAA YSIadaNBYSyid FlLOAtAle o1& RSSLX @ SYOSRRSR AY
that is very risky to tamper witlBut, for examplemore dficient power managemensomething that is

crucial for batterypoweredWindowsdevices strongly argues faan eventdrivenalternative You do

not want the OS to wake ujpom a low power state redarly on an idle machine just to perform @&PU

usage accountinduties, for example.

A straightforward alternative tperiodicallysampling the processor execution state is to measure the
time spent in each processor state direcflhis is accomplishdxy instrumenting the phase state
transitions themselves. Processor state transitions in Windows are knoswon#esxt switchesA context
switch occurs in Windows whenever the processor switches the processor execution context to run a
different thread.Processor state transitionslso occur as a result of high priority Interrupt Service
Routines (ISRghining control following a device interrygs well as the Deferred Procedure Calls
(DPCs) that ISRs schedule to complete the interrupt proce®&ngording the time that each context
switch occurs, it is possible to construct a complete and an accurate picture of CPU consdmption.

% See a twepart article in MSDN Magazine, entitiéd/ 2 NBveritsfin Windowss7¢ ¢ NRA GG Sy o6& Lyadzy3a t I Ny
Bendetovers and published beginning in September 2009. The authors are, respectively, the architect and lead developer of the

Measuring processor utilization in Microsoft Windows Page7

http://msdn.microsoft.com/en-us/magazine/ee412263.aspx

It helps to have a good, general understanding of thread scheduling in the OS in order to interpret this
stream of eventsFigure3 is a diagrantdepictingthe state machine associated with thread execution. At
any point in time, a thread can be in only one of the three states indicated: Waiting, Ready, or Running.
Thestate transitiondiagram shows thehanges in execution g&that can occur. A Waiting thread is
usually waiting for some event to occur, perhapg/ait timer to expirean 10 operation to complete, a
mouse or keyboard click that signals user interaction with the application, or a synchronization event
from another thread that indicates it is OK to continue processing.

I GKNBIR GKIFIG Aa wSFEReé (2 Ndzy A& LI OSR Ay (KS 5A
When a processor becomes available, the OS Scheduler selects the highest priority thremdReadi

Queue and schedules it for execution on that proces®uice it is running, thread remains in the

Running state until it completes its execution cycle and transitions back to the Wait state. An executing

thread can also baterruptedbecause a higher priority execution unit needs to run (this is known as
preemptive schedulingpr it is interrupted by the OS Scheduler becaustrits-slicehas expired. A

Running thread can also be delayed because of a page fault, accessing dafagirution in virtual

memory that is not currently resident in physical memory. These thread execution time delays are often
referred to asgnvoluntary waits

Initial Scheduling Delay
/\ /

/

Ready

Execution Time Delays

,
.
.,
.
.,
.

v, ™~

-
~~~~~~
.~ e
.~ e
________

FAGURES. A STATE MACHINE FORREAD EXECUTION

Figure4 associate these thread execution state transitions with the ETW events that record when these
transitions occur. The most important of these is 8witch eventecordthat is written on every

processor context switch. Tl@Switch eventecord indicates the thread ID of the thread that is entering

ETWinfrastructure The article provides a conceptual overviggscribing bbw to usethe various OS kernel events to

reconstruct a state machine for processor execut@ong withother diagnosticscenarios. Park and Bendetové& LJ2 NIi = da Ly
state machine construction, combining Context Switch, DPC and ISR events enables a very accurate accounting of CPU

dzi Af AT FGAZ2Yy Dé

Measuring processor utilization in Microsoft Windows Page8


http://msdn.microsoft.com/en-us/library/windows/desktop/aa964744(v=vs.85).aspx

the Running state (the new thread id), the thread ID that was displaced (the old threash¢tDyrovides

the Wait Reason cadassociated with an old thread ID that is transitioning from Running back to the

Wait state.The processor number indicating which logical CPU has undergone this state change is

provided in arETW_Buffer Contestructure associated with thETWstandard record headeihread

0 from Process ihdicates the Idle threadwhichis dispatched on a processor whenever there are no

Ready threads waiting for execution il a thread other thanthée Rf S G KNBFR Aa dal Ol A @S
considered busy.

Conceptually, a context switch evesdheres to astate switch pattern, with a time stamp identifying
when the context switch occurred. The CPU time of a thread is the amount of time it spends in the
Running state. lis measured using the CSwitch events that show the thread transitioning Ready to
the Running state and hCSwitch events that show that thread transitioning back fromRimening
state to Waiting.To calculate processor busy, yaursmariz the amount of timeeach processor spends
when the Idle thread is active and subtract from 100% d¢kemeasurement inteval.

/ 4

/7 ReadyThread /7 cswitch(ing)

Initial Scheduling Delay

Ready

» Priority ® \

Execution Time Delays

Ready ; / : _ )
Queue /7 CSwitch(,outWaitReason,é )

hS
.
****
“““““
~~~~~~~

FGURE. THESTATERANSITION DIAGRA®R THREAD EXECUTIGRICATING THETWTRACE EVENTS THARWAHREAD STATE
TRANSITIONS

One complication in this approach is that the ETW infrastructure does not guarantee delivery of every
event to a Listener application. If the Listener application cannot keep up with the stream of events,
then ETW will drop memossesident buffers filled wth events rather than queue them for delivery

later. CSwitch events can occur at very high rates, 28400000 times per second per CPU are not
unusual on busy machines, so there is definitely potential to miss enough of the context switch events
to biasthe calculations that result. In practice, handling the events efficiently irefRé&Listener

Measuring processor utilization in Microsoft Windows Page9

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363716(v=VS.85).aspx

application and making appropriate adjustments to the ETW record buffering options can be used to
minimize the potential for missing events.

To see thigventdriven processolexecution statemeasurement facility at work, access the Resource
Monitor application (resmon.exe) that is available beginning in Vista and Windows Server 2008.
Resource Monitor can be launched directly from the command line, or from dftbdormance Monitor
plugin or Task Managdprerformance tabFigure5 displaysa screen shot that shows Resource Monitor
in action on a Windowg machine, calculating CPU utilization over the last 60 seconds of operation,
breaking out that utilization bprocess. The CPU utilization measurements that ResMon calculates are
based orthe context switch eventsThese measurements are very accurate, about as good as it gets
from a vantage point inside the OS.

(@) Resource Monitor — v =RACRL_X_)
File Monitor Help

| overview| CPU | Memory | Disk | Netwerk|

Processes I 48% CPU Usage [1063 Maximum Frequengy ~ Lo l Views \v] ol
[F] image FID Description Status Threads CPU Average CPU o CPU - Total 100%
[T] ThreadContentionGenerator.exe 13% ThreadContentionGenerator Running b= 29 5082

[] WINWORD.EXE 6156 Microsoft Word Running 17 12 1188

[] perfmon.exe 9428 Resource and Performance Monitor Running 19 1 121 =

[T DisplaylinkManager.exe 1372 DisplaylinkManager Application Running 31 0 0.90

[SearchProtocolHost.exe 9344 Microsoft Windows Search Protacal Host Running 13 2 036

[] system 4 NT Kernel & System Running 207 1 072

[] verizonServicepoint.exe 4124 Verizon Servicepoint Running 38 0 063 60 Seconds

[C] devenv.exe 4532 Microsoft Visual Studio 2010 Running 55 0 0.55 Service CPU Usage 100%
[System Interrupts - Deferred Procedure Calls and Interrupt Service .. Running - 0 0.50 E
[T svchost.exe LocalSystemNetworkRestricted) 1068 Host Process for Windows Services Running 13 0 047

[svchost.exe inetsves) 1096 Host Process for Windows Services Running 47 0 035

[dwm.exe 2536 Desktop Window Manager Running 6 0 033

[C] WmiPrvSE.exe 5852 WMI Provider Host Running 1 1 0.20

[Z] g2miauncher.exe 4656 GoToMeeting Running 15 0 0.16

[] DmPerfss.exe 1236 Performance Counter Callection Service Running 37 0 011

[C] WmiPrvSE.exe 10816 WMI Provider Host Running 13 0 0.10 CPUD 100% -
[C] MOE.exe 6520 Mesh Operating Environment Running] 0 0.08

[svchost.exe [DeomLaunch) 944 Host Process for Windows Services Running 14 0 0,07

[7] taskmagr.exe 9776 Windows Task Manager Running 6 0 0.06

7] services.exe 764 Senvices and Controller app Running 10 0 0.06

[] esrss.exe 712 Client Server Runtime Process Running 13 0 0.04

[C] OUTLOOK.EXE 5532 Microsoft Outlook Running 3 0 0.03

[T svchost.exe RPCSS) 156 Host Process for Windows Services Running 12 0 0.03

[] SearchFilterHost.exe 10116 Microsoft Windows Search Filter Host Running 5 0 0,03 cPUL 100% -
[T explorer.exe 2664 Windows Explorer Running 37 0 0.02

[T svchost.exe (LocalServiceNoNetwork) 1972 Host Process for Windows Services Running 19 0 0.02

[svchost.exe LocalServiceNetworkRestricted) 1032 Host Process for Windows Services Running b=l 0 0,02

[] MsMpEng.exe 456 Antimalware Service Executable Running 43 0 0.01

[] TivoNotify.exe 3580 TiVo Notify Service Process Running 10 0 0.01

[] tsass.exe 780 Local Security Authority Process Running 9 0 0,01

D SearchIndexer.exe 7872 Microsoft Windows Search Indexer Running 17 0 0.01

[C] g2mcomm.exe 4388 GoToMeeting Running 20 0 0.01 cPU2 100% -
[ipoint.exe 2712 IPoint.exe Running 8 0 0.01 -

Services B 0% CPU Usage (v |

Associated Handles Search Handles P [yl |

Associated Modules & |

CPU3 - Parked 100% - |~

HGURE. THEWINDOWS/ RESOURORIANAGERPPLICATIQON

The Resource Monitor measures CPU busy in realbiniistening to theETWeventstream that

generates an evergverytime a context switch occurft also produces similar reports from memory,

disk and network events.

To summarizé¢hese developments this tracedriven measurement source positions the Windows OS so
it could replace its legacy CPU measurement facility with something more reliable and accurate

sometime in the near future. Unfortunately, converting all existing features in ¥wsdincluding
Perfmon and Task Manager, to support the new measurements is a big job, not without its
complications and not always as straightforward as one would hope. Bahti@patefuture versions

Measuring processor utilization in Microsoft Windows

PagelO

of the Windows OS Wadoptan accurate, eventlriven approach to measuring processor utilization
ultimately replacinghe legacy sampling approach that Task Manager and Perfmon rely on today.

Using xperf to analyze CSwitch events

The sameCPU busgalculatiorsthat the Resource Manager in Windowsnakes canalsobe performed
after the fact usinghe event data from ETWI his is the technique used in théindows Performance
Toolkit(WPT put which isbetter knownaround Microsoftasxperf), for example, to calculate Csage
metrics

Once you have downloaded and installed iNendows Performance Toolkiyou can launch a basic ETW
collection session using the following xperf command:

xperf -on DiagEasy

Then, after you have accumtdal enough data, issue another command to stop tracing and capture the
event stream to a file:

xperf-d cputrace.etl

Next, process the cputrace.efile using the xperfview app. After the trace file is loaded, xperfview
provides visualizations that are very similar to ResMon. See Fidarean example.

Measuring processor utilization in Microsoft Windows Pagell

http://msdn.microsoft.com/en-us/performance/default.aspx
http://msdn.microsoft.com/en-us/performance/default.aspx

wé:\PngramFllﬁ\;i osoft =rforma polkitycp ._.---. ndo Derfo n Al%er

File Graphs Trace Window Help

% Usage

1) I
0 L L Y B I B B
100 200 300 400 500
Time

CPU Idle States =

States States |

m

’ | l) ‘ ' (]
f\\,\/w«\’(‘J il wi\h.-.m M‘* .. ML

0 |||

100 200 300 400 500
Time

H
NN EE N RN

DPC CPU Usage =

&
[
w
o
=]
m

a
b b b

o P
L I L B I IO

100 200 300 400 500 L
Time

Interrunt CPU Usaae =~
] I b
b - - - —

HGURES. CPWUTILIZATION GRAPHEXPERFVIEMBASED O TWCONTEXT SWITCH EVENTA GATHERETTH THE XPERF UTYLI
ADDITIONALSRANDDP(EVENTS ARE USED AOGULATE THE AMOUDH TIME DEVICE DRRSESPEND PROCESSNNERRUPTS

Figureb6 illustrates several of the CPU utilization graphs that xperfview creates from the context switch
event strean. To help make the graph more readable, | filtered out Idle time calculation for all but two
of the logical processors on this machighe machine illustrated has 8 logical CPUs.gain insight

into what high priority Interrupt Service Routines (IS&&) DPCs are runninggRand DPCevents
shouldalso be gatheredwhich the DiagEasy event prefih xperfdoes automatically(Windows device
driver developers are very interested in theRor an example, sdé@is blog postingliscussig using the
xperf ETW utility to capture CPU consumption by the TGRtRork driverstack)

Measuring processor utilization in Microsoft Windows Pagel?2

http://msdn.microsoft.com/en-us/library/aa964780(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964748(v=VS.85).aspx
http://blogs.msdn.com/b/ddperf/archive/2008/06/10/mainstream-numa-and-the-tcp-ip-stack-part-i.aspx

With xperfview, pu canalsorequest a Summary Table which displays)@Bage by process (and

thread) by rightclicking on the CPU Usageaph and accessing tim@p-up context menu. Aexample of

the CPU Scheduling Aggregate Summary Table is illustrated in Figuses@nilar to the one ResMon
produces.The data here was gathered while runningalti-threadedCPU soaker program called
ThreadContentionGenerator while ResMon was also active. You can see that the calculation i Figure
roughly mirrosthe results shown in Figufefor ResMon, allowing for some variation that is to be
expected since the intervathkemselvesare not identi@al. The xperf interval showin Figure @s
approximately 500 seconds long, while ResMon maintains a rolling window that is only 60 seconds in
duration. The ResMon screen shot was taken somewhere in the middle of the longer xperf tracing
session.

r ~— — - q
i“ CPU Scheduling Aggregate Summary Table - C:\Program Files\Microsoft Windows Performance Toolkit\cputrace.etl - [1.267276869 s - 505.009995276 s] - 503.742718407 s - Wi... lilﬂlﬂ_hj
File Columns View Trace Window Help
Line Process Thread ID Thread Start Module Thread Start Function Cpu U;age (ms) % Cpu Usage % Relative Cpu Usage m
] ThredContentionGeneratorecetl | |
2 Idle (0} 0 ntoskrnl.exe Unknown 1,300,574.017 433 3227 3243 =
3 WINWORD.EXE (6156) 478,142,076 749 1186 11.92 1
4 perfmon.exe (9428) 41,678,584 713 102 1.04
5 System (4) 31,258,938 145 078 0.78
6 devenv.exe (4532) 25,839,223 524 064 0.64
7 DisplayLinkManager.exe (1372) 17,468 686 405 043 0.44
d 8 VerizonServicepoint.exe (4124) 12,148,140 026 0.30 0.30
9 iexplore.exe (8944) 9,763141 928 0.24 0.24
10 dwm.exe (2596) 8,989,403 291 0.22 0.22
n g2mcomm.exe (4388) 8,210,806 845 0.20 0.20
12 svchost.exe (1096) 7,086,795 472 018 01a
13 WmiPrvSE.exe (5852) 6,831.404 692 017 017
N 14 g2mlauncher.exe (4656) 6432252 233 016 0.16
15 w3wp.exe (10320) 5932424 B45 015 015
16 iexplore.exe (10344) 5,763,624 030 014 014
17 DmPerfss.exe (1236) 4,587 935 760 011 011
[18 iexplore.exe (7938) 3,934 473 001 010 0.10
19 svchost.exe (1068) 3,558,787 235 0.09 0.09 I
20 csrss.exe (712) 3,087.273 582 0.08 0.08
n svchost.exe (344) 2,868 836 223 0.07 0.07
2 taskmgr.exe (9776) 2,580 918 307 0.06 0.06
23 explorer.exe (2664) 2,569.102 210 0.06 0.06
24 iexplore.exe (9164) 2,089.931 202 0.05 0.05
25 services.exe (764) 1,770,653 489 0.04 0.04
N 26 OUTLOOK.EXE (5532) 1,636.354 578 0.04 0.04
27 MOE.exe (6520) 1,493,030 570 0.04 0.04
28 TiVoServer.exe (3352) 1,300 485 548 003 0.03
9 MsMpEng.exe (456) 1,171,218 206 003 0.03 =z
Total cpu Usage: MNon-Idle/DPC/ISR: 67.23% Idletime: 32.27% DPC/ISR time: 0.49%

FGURE. THECPUSCHEDULINGAGGREGATBJMMARYTABLE CALCULATED BERFVIEWIHE RESULTS OF THESECULATIGN
CLOSELY RESEMBLESRBLLING ONENUTE CALCULATIOEFORTED BY TRESOURCIONITOR INAGURED.
Forsomeperspectiveon the volume of trace eventhat can be generatedhe binary .etl trace file
produced in this example was approximately 325 MB on disk for a DiagEasy trace sesgim fibrat

more than enminutes. Running with the xperf defaults, | received a notification when the trace session
closed that three ETW 64K buffers of data were dropped during the trace becausevggaunabldo

keep pace with processing the event streameattime.

¢KS /2yGSEG {6AGOK S@Syid Fftaz2 LINRP@OARSAE GKS 2tR
understand why the sequence of thread scheduling events occurred. For reference, a Windows context
switch is definedhere, while the contents of the ETW (Event Tracing for Windows) context switch event
record are definedhere, including a list of the current thread/aitReason codes.

Measuring processor utilization in Microsoft Windows Pagel3

0K

http://msdn.microsoft.com/en-us/library/ms682105(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964744(VS.85).aspx

Note that you cammeasure CPU queue tinaecurately fromthe ETW events, an importamdicatorof

processor contention when the processor becomes saturated. As illustrated in Bjgheetransition

from the Wait state to the Readyate is marked by a ReadyThread event record. The time between the
ReadyThread event and a subsequent CSwitch event marking its transition to Running is one form of

CPU Queue time. A second form of CPU queue time is the time betw@switcifX = 2 dzii = 22IyAEiXw S | &
where the WaitReason is either a Preempt or tisliee qguantum expiration and a subsequent re

dispatch.Both forms of CPU queue time can be measured accurately using ETW.

When precision in understanding patterns of CPU consumption is requiredppixstssing the ETW
context switching event stream isnauch betterway to proceedhan attempting to use the Windows %
ProcessofTime performance counterdMeasuring CPU consunigm from the context switch events is
considerably more precise than, for example, the Windows performance counter data available in
Perfmon that report processor utilization at the system and process level based on processor state
sampling. Such high prision measurements are not always required, of course, and processing the
ETW context switching event streanrédativelyexpensive due to the extremehighvolume of trace
data that you must deal with.

Measuring thread execution state.

Besidesneasurimg processor utilization at the system levise stream of context switch events can also

be reconstructedto drill into CPU consumption at the process and thread lévelexemplary example

of this approach isiie+ A & dzI f { { dzBnkw@rencyKsBafzér &vailAkEn Visual Studio 2010.

(For reference, seéPerformance Tuning with the Concurrency Visualizer in Visual Studiar2®i

Visual Studio 201Brofilerz &n MSDN Magane articleg NA G 0 Sy o6& GKS (G22f Qa LINRYC
Shafi.) The Concurrency VisualigathersContext Switch events to calculate processor utilization for

the application being profiled.

The VS oncurrency Visualizereates a systerdevel CPWtilization View with a interesting twistg the

view pivots based on the application you are profiliagerspective that matches thaf a software

performance engineeengaged ira performancenvestigation Based on the sequence of context switch

trace events, the Concurrency Visualizer calculates processor utilization by the process, aggregates it for

the current selection window, and displays it in the CPU Utilization \irethe CPU Utilization View, all

other processor activitjor processegother than onebeing profiled is lumped together undea

OF 6S32NE O f f S(R {GEHEINKESING ataNPIO S &yaRS a1 KS G LRE S LINRPOSaas
mechanism, not an actual process that is dispatched, are also broken out sepeBatfly. Shafa

article for more details(For reference, Figure2below illustrates the CPU Utilization View.)

The Concurrency Visualize@rimary focus i®n being able taeconstructthe sequence of events that

AYLI OG |y | LILX prddress The @oRciNBS/EORO deidradgt A istBeNd@ia ¢ KNB I Ra
display showing ah LJLJ A Ol (i A 2 y Q @he GdwS&dalini execytionldodgreéen a thread by

thread basis. For eadhread in your application, the Concurrency Visualizer shows the precise

sequence of antext switch events that occurredhese OS SchedulereveNt®& Ff SO0 G KIF G G KNBI
execution stateover time See Figur8 for an example of this view.

Measuring processor utilization in Microsoft Windows Pagel4d

http://msdn.microsoft.com/en-us/magazine/ee336027.aspx

ThreadContentiontester100211(5).vsp

4 = Current View: | Threads ~|

i) 40f12 channels hidden from view Show All Threads

Threads Cores

CPU Utilization

Sortby: StartTime ~ Zoom Z

Name Milliseconds L : L l ! 1 L ! |)

Disk 0 Reads

Disk 0 Writes

Main Thread(6796)

CLR Worker Thread(6420)
CLR Worker Thread(6920)
Worker Thread(508)

CLR Worker Thread(4664)

CLR Worker Thread(5440)

m

Visible Timeline Profile

11% Execution
Category = Preemption
Subcategory = LPCs/Interrupts
Delay = 0.7718 ms

25% Synchronization
1% /o

39% Sleep

0% Memory Management
23% Preemption
0% M UIProcessing

Per Thread Summary

File Operations

HGUREB. SCREEN SHOT OF THRICURRENGASUALIZER ILLUSTRIETITHREAD PREEMPTEMA HIGHER PRIDRISYSTEM

ROUTINE

:i| Profile Report | &= Currentstack | L Unblocking stack | & Hints

Figure8 shows the execution path of six application threads, a Main thread, a generic worker thread,
and 4 CLRhe Common Language Runtime for .NET languaga®er threads that the application
created by instantiating a .NHhreadPoobbject. (There were originally more threads than this, but |
chose to hide those that were inactive over the entire run.) For each thread, the execution state of the
thread ¢ whether it is running or whether it is blockeds indicated over time.

The upper half of the display is a timeline that shows the execution state of each thread over time. The
execution progress of each thread display is constructed horizontally from left to right from rectangles
that indicate the start and end of a particular tla state. An interval when the thread was running

shows as green. An interval where the thread is sleeping is shown in blue. A ready thread that is blocked
from executing because a higher priority thread is running is shown in yellow. (This state id labele

GLINBSYLIiA2ydé v | GKNBIR AY

v =

\asa

YZSBSNB.Y AT I GA2Yy RSt

On the lower left of the display is a Visible Timeline Profile. This summarizes the state of all threads that
are visible within the selected time windown the green shot in Figure,8 have zoomed into a time

Measuring processor utilization in Microsoft Windows

Pagel5

http://msdn.microsoft.com/en-us/library/3dasc8as(VS.100).aspx

window that is approximately 150 milliseconds wide. During that interval, the threads shown were in a

state where they were actively executing instruction only 11% of the time. For 25% of the time interval,

threads were blocked waiting on a lock. Finally, there is a tabbed display at the lower right. If you click

2y G0KS Gt NPFAES wSLERNIé¢ Glrox | KAad2aNlry RAaLX @&
thread over the time window. Inthe screénK 2 4> L KIF @S Of AO1 SR 2y (KS a/ dz
the call stack associated with the ETW context switch event. If the thread is blocked, the call stack

indicates where in the code the thread will resume execution once it unblocks. We Wiltdrihat call

stack in a moment.

Note: The Threads View also displays call stacks from processor utilization samples that ETW gathers on
a systerawide basis once per milliseconQaltstacks sampleare visibleduring any periods when the
thread is exeating instructiongand ETW execution sampling is active

The Concurrency Visualizer screen shot in Figiltestrates the calculation df NXzyy Ay 3 G KNBF RQ
gueuingdelay. Thread 6920, which happens to be a CLR thread pool worker thread, is sleopoira

in time where it was preempted by a higher priority task. The specific delay that | zoomed in on in the

screen shot is preemption due to the scheduling of a high priority LPC gni&&this categoryn the

Concurrency Visualizaiso encompases assorted APCs and DPCs. In this specific example, execution of
Thread 6920 was delayed for 0.7718 milliseconds. According to the trace, that is the amount of time

between Thread 6920 being preempted by a high priority system routine and a subsequitco

switch when the ready thread waagainre-dispatched.

The tool also displays the call stack of the preempted thr&e call stack indicatéisat the CLR a
garbage collecto(GC)was running at the tim¢hat thread execution was preempteérom thecall

stack, i looks like theGC isweeping the Large Object Heap (LQ#H)ng to free up some previously
allocated virtual memory. This is not an opportune time to get preempted. You can see that one of the
other CLR worker threads, Thread 642@&|gs delayed Notice from the color codinghat Thread 6420

is delayedwaiting on a lockPresumably, one of the other active CLR worker thréatise parent
processholdsthe lock that Thread 6420 is waiting for

CKA& A& 2yS 27F G K2chckondhe dgmclironiyafiori 8ejayi thatbThreatl 642Risiz
experiencing, as illustrated in Figugyou can see that thiock thatThread 6420s trying to acquire is,

in fact, currently held by Thread 692e one that was preempted somewhere in the midstunning

garbage collectior £t AO1 Ay 3 2y GKS (I 0 ilUstraied) iddicdtes that thelzNNB y G {
duration of the synchronization delay that Thread 6420 suffered in this spesitance olock

contention was about 250 milliseconds.

* One of the ETVDS kernebvents that the Concurrency Visualizkres notanalyze is th&eadyThreaévent. The interval

between a ReadyThread event and a subsequent Context Switch that signals that a ready Thread is being dispatched measures
CPU queue time delay dirégtUsing event data, it is possible to measure CPU queuing delays precisely. Analysis of the ETW
kernel event stream far exceeds anything that can be done using Windows performance counters to try to estimate the impact
of CPU queuing delays.

Measuring processor utilization in Microsoft Windows Pagel6

http://msdn.microsoft.com/en-us/library/dd765158(VS.85).aspx

Thescenario here shows one CLR worker thread blocked on a lock that is held by another CLR worker
thread, whichin turn finds itself being delayed due to preemptions from higher priority Interrupt
processingWe can see that thatever high priority work preentpd Thread 6920 rsthe side effect of

also delaying Thread 642§ince 642@vas waiting on a lock that Thread 69%28ppened to be holding at

the time. The toolin Figure9 displayshe Unblocking stackom Thread 6920 which shows the original
memory alleation from the Dictionary.Resize() method ¢edingsatisfied, releasing a global GC lock.
When Thread 6920 resumetkecutionfollowing its preemptionthe GC operation completes, releasing
the global GC lock. Thread 6920 continues to execute for an@tharicroseconds or sdefore it is
preempted because its time slice expired. Even as Thread 6920 blocks, Thread 6420 continues to wait
while a different CLR thread pool thread (4664) begins to execute indtaally, after aother 25
microsecondslelay, Thread 6420 resumes executidor a brief period both 6420 and 4664 execute in
parallelfrom approximately the 764@® 7650 microsecond milestone@loweverthey are subject to
frequent preemptions during that period of overlapped executjon.

® Welcome tothe indeterminacyassociated witlparallel programming.

L 62y Qi (Heretd golink Svhatithisvitfle concurrent CLRommon Language Runtiméhread pool application is

doing. Suffice to say thétinstantiates and references a very largetitary object in .NET, andvrote it to illustrate some of

the performance issues developers can face trying to do parallel programming, waitbpis | was blogging aboat the

time. (I shouldalsonote that the test program puts the worker threads to sleep periodically to simulate synchronous I/O waits
to create an execution profile similar to what one could expect in processing a ty@PaNET web request that needs to

access an external database, an excellent idea | appropriated from a colleague, Joe He)lerstein

Whenl first beganto profile thistest app uihgthe VSConcurrency Visualizer, | was able to see blocking issuesdika¢h

described heravhere the CLR introduced synchronization and locking considerations that are otherwise opaque to the
developerWell,caveatemptoE L &dzlJLl2 8SX $6KSy Al O2YS8Sa G2 dziAfATAy3a az2vysSz2ys$§
Rico Marig’ APRediormance Tidbits blof@r a singular discussion of his intriguing proposal that a .NET Framework method

provide aperformance signaturéhat would allow a developer to make an informed decision before ever calling into s8me 3

LI NI e Qa O2RS® ysistaanbt béilusdd io hrédicQiee ReSforhayide bf some arbitrarily complex method call

embedded in your application, something Rico was eventually forced to concede.)

It turns out that .NET Framework collection classes do use locks to ghseaglsafeoperation in a multithreaded program,

g KSGUKSNI Al A& ySOSaahrendSafeeQellegfid@is ¢ SS9 {i2KIIA G {BDNIAGY2NBE AYF2N)I (A z
my test programinstat I G SR FyR | 00SaaSR I RSRAOIGSR AyaitlyO0S 2F GKS 5AO0i
necessary in this little test application. Because | had taken steps to ensure -fafsy issues would never arise in my test

program, | was unpleasagtsurprised when the tool uncovered lock contention for these Dictionary objects. Unfortunately,

there is no way for the developer to explicitly signal the runtime that locking is not necessary. Some of the popular .NET

Framework collection classedike the HashTable do provide aSynchronizednethod that exposes a lock created implicitly.

But the Synchronizednethod is designed to support more complex mititieaded access patterns, such as a multiple readers

and writers scenario, for exampl&o assist in parallel programming taskeveral newer collection classes were introduced in

the System.Collections.Concurremtl Y S & LI OS G-KNBSdHdzABYyR{ 2K AYAAGAO fleft Ay3 | LILINEI
scalability for parallel programs.

| eventually tweaked the test app into an especially ghoulish version | call the LockNestMonster pgregrases explicit
global lockgo shine an even brighter light on these issues.

Measuring processor utilization in Microsoft Windows Pagel?

http://blogs.msdn.com/b/ddperf/archive/2009/03/16/parallel-scalability-isn-t-child-s-play.aspx
http://blogs.msdn.com/b/ricom/
http://blogs.msdn.com/b/ricom/archive/2007/02/07/performance-signatures-cmg-2006-paper.aspx
http://msdn.microsoft.com/en-us/library/dd997305.aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.concurrent.aspx

ThreadCoententiontester100211(5).vsp * [X

= = Current View: | Threads 2

i) 7 of 12 channels hidden from view Show All Threads

CPU Utilization Threads Cores Demystify.. '
Sortby: StartTime ~ 4 & X X | .27 2L Zoom I £
760 5 =
Name Milliseconds 1 L L L L ! : : : : L L
Disk 0 Reads E
Disk 0 Writes

CLR Worker Thread(6920)

CLR Worker Thread(4664)

Visible Timeline Profile = . =5 | [
| _J Profile Report | #= Current stack ‘ :_ Unblocking stack ‘ © Hints |

18% Execution

9% Synchronization Thread 6420 was unblocked by thread 6920
The unblocking call stack follows: o
2% jro] R e
32% Sleep
0% Memory Management
39% Preemption

0% 8 Ul Processing

Per Thread Summary

File Operations

mscorlib.dll!System,Collections.Generic.Dictionary"2.

mscorlib.dll!System.Collections.Generic.Dictionan
threadcontentiontester.exe!ThreadContentiontester. ThreadContention.WorkerThread.ThreadPoolDelegate

HGURB. CLRNORKERHREABH420BLOCKED BECAUSE WVAITING ON GCQLOCK THAT HAPPENSBEHELD BMHREAIS920,
WHICH IS SUBJECTPREEMPTION BY HIGHERRORITY SYSTEM RINES

Time -slicing.

The Concurrency Visualizaisoutilizes context switch events to calculate the delays a thread

encounters during execution due flseemptionas aresult of th& E LJA NI G A 2 y 2-dlicefin G KNB I R
FigurelO, | clicked on the large yellow blook the right hand side of the executidime bar graph for

Thread 6920ndicatinganother long delayAs in Figur®, | have hidden all but the three active CLR

thread pool threads. Using a combination of zooming to a point of interest in the event stream and

filtering out extraneous threadss illustrated irFigurel0, the Concurrency Visualizer able to

constructan execution timeorofile usingjust those events that are visible in tiearrenttime-window.

® The duration of the OScBeduler time slice being one of the few tuning adjustments available in the OS. For the
record, | normally recommend that system administrators not fiddle with this tuning knob, unless they lots of extra
time on their hands. This old&B articleprovides some flavor for what is involved. For someone that cannot resist
the temptation to fiddle with the timeslicing tuning parameters, the Concurrency Visualizer Threads View is the
first Windows perfornance tool that can help you determine if changing the OS default-$liee value is doing

your application any good, or harm, for that matter.

Measuring processor utilization in Microsoft Windows Pagel8

http://support.microsoft.com/kb/111405

Overall, the three active CLR worker threads are only able to execute 18% of ¢éhevtiite they are
delayed by synchronization 9% of the time and subject to preemption 39% of the(¥ime can click on
the Profile Report tab in theiddleright portion of the display and see a profile report by thread.)

HGURELO. USING THEONCURRECYVISUALIZER TO DRNI® THREAD PREEMRIELAY.S

At the point indicatedy the selectionthe timeslice quantum for Thread 6920 expired and the
Scheduler preempted the executitigyeadin favor of some other ready thread. Looking at the
visualizatio, it should be apparent that the ready thread the Scheduler chose to execute next was
another CLR thread pool worker thread, namely Thread 4664, which then blocked Thread 6920 from
continuing. The tool reports tha context switcli6920, 4664) occurredna that Thread 6920 was
delayed for about 275 milliseconds befateesumed executiomfter being preempted.

As illustrated in this example, the Concurrency Visualizer uses thebB3&u event data from a profiling

run to construct a state machine that reflects the precise execution state of each application thread over
the time interval being monitoredt goesconsiderablypeyond calculating processor queue time at the
thread levellt understands how to weave the sequence of Ready Thread and Context switch events
togetherto create this execution time profildét summarizes the profiling data, calculating the precise
amount time of time each thread is delayed by synchronous 10, page fault;wicgduntary waits due

Measuring processor utilization in Microsoft Windows Pagel9

