

The Association of System
Performance Professionals

The Computer Measurement Group, commonly called CMG, is a not for profit, worldwide organization of data processing
professionals committed to the measurement and management of computer systems. CMG members are primarily concerned
with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity
management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary
resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group’s 2006 International Conference.

For more information on CMG please visit http://www.cmg.org

Copyright 2006 by The Computer Measurement Group, Inc. All Rights Reserved
Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole
or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters,
151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this
publication in whole or in part solely for internal distribution with the member’s organization provided the copyright notice above is
set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those
of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts
in any application or usage. Printed in the United States of America.

http://www.cmg.org

The Reality of Virtualization for Windows Servers
Mark Friedman

Demand Technology

Abstract.
This paper discusses the performance and capacity concerns that arise when Windows servers are run as virtual machine
guests on current virtualization solutions. It reviews the advantages and disadvantages of virtualization as a server
consolidation strategy. It describes the major sources of performance degradation that applications running on guest
machines face today and discusses the prospects to resolve these problems as new hardware emerges in the near future.

1.0. Introduction.
This paper highlights several important capacity planning
considerations that arise in the virtualization technologies
that are currently available for the Windows server
platform. It begins with a discussion of the virtualization
technology available today. It discusses the appeal of
virtualization to address the proliferation of under-utilized
Windows servers, which is widely perceived as a
significant system management problem. It takes the
somewhat contrarian view that this problem is not the
profligate waste of resources that the evangelists for
virtualization suggest it is, nor is virtualization the most
direct approach to its solution. After providing a realistic
assessment of the virtues of current virtualization
technology, the paper then tries to identify the situations
where virtualization technology can be employed most
effectively.

Capacity planning for virtualization is best described as an
n:1 folding problem. The capacity planner must assure that
the guest workloads can fit into the one physical machine
managed by the virtual machine Host. This is a multi-
dimensional problem where the capacity planner must
assure that the processor, disk, memory and network
bandwidth of the combined guest machines – plus some
allowance for virtual machine “overheads” – does not
exceed the physical capabilities of the underlying hardware.
To the detriment of capacity planning, there is limited
measurement data the Windows Server environment that
can be used reliably to estimate the amount of virtualization
overhead to expect in advance for a given workload.

The discussion of the sources of various virtualization
“overheads” inevitably leads to a consideration of the
performance issues that currently arise when Windows runs
as a guest machine. This article focuses on two significant
problems that have not been discussed much by other
commentators. One concern is the technique used to
schedule virtual machines that has a serious performance
impact on I/O bound workloads. A second problem area
involves the measurement perturbations that occur on the
Windows platform after virtualization technologies are
introduced. Finally, the paper discusses the hardware
improvements expected in the near future and their
potential to resolve these problems in a satisfactory manner.

2.0. Reigning in the Server Farm.
 Mainly out of concern for easing the burden of system
administration, Windows servers tend to be configured to
run an homogenous workload performing a single task.
Some of the historical reasons for preferring isolated
Windows servers running single applications are (1)
increased stability, (2) better reliability, (3) simpler
problem-solving, and (4) simpler capacity planning.

A powerful argument for running homogenous, single
workload Windows machines was increased stability.
Indeed, the present author has been one of the forceful
public advocates for this strategy to deploy Windows
servers successfully on a large scale. [1] The practices and
procedures forged in the crucible of experience that led in
the past to successful deployment of large numbers of
Windows servers running mission critical applications have
an understandable resilience in the face of change. At the
present time, however, it is worth considering whether the
historical conditions that favored configuring Windows
machines to run a single, homogenous workload are still
present today.

Current industry best practices recommend that the
Technical Support group responsible for Windows servers
and desktops adopts a stable image of the operating system
and application software that it intends to maintain and
support going forward after a lengthy period of
concentrated acceptance testing. The image is then cloned
every time there is an organizational requirement to support
this application in a new location. The result is a
proliferation of large numbers of Windows machines that is
evident to almost every observer of the IT department, most
of which by almost any common measure of capacity are
severely underutilized.

This widespread practice of cloning operating system and
application software images that are certified by sysadmins
for stability and reliability does not alone lead to massive
over-provisioning of Windows servers. The hardware to run
Windows keeps getting more powerful in leaps and bounds.
Current generation hardware from Intel and AMD offer 64-
bit addressing, massive amounts of RAM, dual core
processors, and hyper-threading. These machines offer
more processing power than many single application
servers will ever need. This, in turn, leads to opportunities
to save administrative costs by reducing the total number of

machines that need to be managed. Server consolidation
makes evident good economic sense, and virtualization is
one path to server consolidation.

In the case of a remote field office operation, for example,
an accomplished system administrator might think it is
necessary to supply a minimum of three separate OS
images: one to provide the essential Messaging application
like MS Exchange or Lotus Notes to tie employees at the
remote office to the corporate e-mail network; one to
provide Active Directory-based security and authentication
services, and a third to supply data protection (i.e., back-up)
and data recovery. Conventional practice would be to
supply three separate dedicated machines to perform these
functions, all of which would likely be severely under-
utilized. Virtualization is an appealing option in this
instance because it allows all three machine images to be
run inside a single box.

We are not ready to concede that this over-provisioning is
nearly as big a problem as IT professionals reared on the
frugality required to manage expensive mainframe
technology cost-effectively presume it to be. In the face of
the changing economics of Information Technology, it is
certainly worthwhile to examine the assumptions behind
this presumption that delivery of service requires separate
machines. But it is also fair to say that an application of
rudimentary capacity planning practices and procedures
could sharply reduce the degree of over-provisioning that
occurs.

2.1. Why virtualization. This leads us to the heart of the
matter. Given this widespread over-provisioning, how has
virtualization come to be considered the leading solution to
the problem. This section explores some of the more
obvious benefits that accrue to server consolidation using
virtualization. It is a short step from running single
application servers to recognizing that the servers these
applications are running on are often massively over-
provisioned. Virtualization promises to enable current
hardware to be used more efficiently. 1

Many IT organizations view virtualization technology as a
viable solution to the evident problem that the organization
has too many machines to manage. In theory, at least,
virtualization technology is positioned to address the
inefficiencies of running machines that are severely over-
provisioned. For the most part, any potential performance
concerns with virtualization are deemphasized. It is
assumed that the hardware used to consolidate these
workloads is so much more powerful than what its OS
guests demand as to minimize most practical performance
concerns. But, as will be discussed below in more detail,
this assumption is naive.

1 Dysfunctional software licensing policies sometimes play a role
in discouraging consolidating multiple workloads on larger
machines running a single OS image or multiple databases, for
example, under a single SQL Server license.

Virtualization does provide a mechanism that allows system
administrators to utilize current hardware more effectively
while retaining all the administrative advantages of
isolating workloads on dedicated servers. Using
virtualization, it is, for example, possible to configure and
run two or more virtual machines – each devoted to running
a single, isolated workload – on a single hardware platform.
In the multiple machine scenario described in section 2.0,
instead of provisioning three separate machines to run the
mail server application, the domain controller, and the
back-up server, all three server machines can be
consolidated on a single hardware platform running
virtualization software.

So virtualization allows the system administration to supply
all three essential services discussed above on a single piece
of hardware, which is certainly a simplification along that
important dimension. Moreover, the virtualization solution
has the additional benefit that it appears not to require
major changes in current system administration machine
configuration practice. (The recognition that virtualization
itself might add significant complexity to the operation is
something that usually only surfaces later with experience.
See, for example [3].)

Curiously, the quaint possibility that multiple workloads
can be readily consolidated today and delivered by a single
operating system image does not seem to occur to most
Windows Technical Support professionals. Yet while many
of the system management deficiencies of early versions of
the Windows NT platform have been addressed, the “best
practices” associated with deploying single application
servers has barely taken notice. (We will return to this topic
in section 8 where some of the recent wide-ranging
Microsoft system management initiatives are discussed.) In
at least some instances, this is due to an incomplete
understanding of the basic system management disciplines,
including performance and capacity planning, and a woeful
lack of fundamental technical skills, such as the ability to
craft simple scripts to automate common administrative
functions.2

3.0. Virtualization technology today
Software developers were among the earliest adopters of
the virtualization technology that is available today for
Windows. They faced a common problem, namely, the
need to subject new releases of software to rigorous testing

2 In fairness, it may well be that many quite capable system
administrators are too busy responding to immediate and pressing
problems in their massive server farms to ever have the time to
acquire and hone these basic skills. Moreover, the mobile pension
and benefits packages that most companies provide to their
employees today are also a major disincentive for IT departments
to nurture and train in-house Tech Support professionals for long-
term service to the corporation. In today’s workplace, IT
knowledge workers are obliged to acquire the repertoire of
technical skills that ensure they can remain profitably employed
over the course of a long career themselves.

on a wide variety of platforms. Virtualization software
allows a single machine to be configured to run multiple
operating system images that can then be used to ensure
that the software being developed functions correctly in
diverse configurations. Software development and Quality
Assurance testing remains the one area where virtualization
can be deployed with the greatest unqualified chance of
success.3

Virtualization is accomplished as illustrated in Figure 1, by
installing a virtual machine host on the bare metal that is
then capable of running numerous virtual machines guest
operating system images beneath it; in practice, as many
guest machines as will fit.

D
is
k

Figure 1. The architecture of VMware ESX version 2.

Figure 1 illustrates several key architectural features of the
most popular virtualization solution for server
consolidation, which is the VMware ESX Server product.
(The discussion that follows is based on ESX version 2.
Details about ESX version 3 were just starting to emerge as
this paper was being written. Based on the limited
information currently available, ESX version 3.0 does not
make any major architectural changes to the software.)
Note that the VMware ESX software functions as the

3 Interestingly, the two major vendors of virtualization software
for Windows development and application testing – Microsoft and
and EMC’s VMware subsidiary – both currently provide full-
featured downloadable versions of their products for free. Free
versions of both Virtual Server 2005 R2 and VMware GSX are
currently available. Since the GSX product line no longer
generates any licensing revenue to VMware, the company is
forced to rely almost entirely on licensing revenues that the ESX
product line generates. ESX, of course, is positioned squarely at
the market for enterprise-class server consolidation solutions, not
software QA.

primary operating system (OS) supervisor that interacts
directly with the physical hardware – the processor, RAM,
the disks, the network, the video display, etc. Due to its
status as a base platform that runs the virtual machines, the
VM Host software layer that you install the virtual machine
OS on top of is sometimes called the hypervisor [5]. For an
academic audience, the VM Host software is known as the
Virtual Machine Monitor [6]. Both are terms for an
operating system supervisor that is very limited in scope.

Unlike a more general purpose operating system, the
functions that the VM Host software performs are narrowly
delineated to those that are required to define the virtual
machine guests and sustain them once they are activated.
Since VM Host software for Windows originated with
Independent Software Vendors (ISVs) who had no
preferred access to Windows internals, an additional goal of
the 3rd party developers who created the VM Host software
was to run Windows guest machines transparently.

Note that in the ESX architecture the VM Host software is
responsible for all native devices attached to the machine.
The requirement that VMware be able to provide native
device drivers is a major encumbrance, the burden of which
VMware attempts to minimize by using a Linux-
compatibility module. This Linux interoperability makes it
relatively easy to adapt existing Linux device driver
modules so that they can be re-compiled into the VMware
Host kernel. (Due to the GNU Open Source licensing
restrictions, VMware is careful to say that ESX was not
derived directly from Linux, despite outward evidence of its
family resemblance.) In practice, ESX supports a wide
variety of disk, network, and SAN-attached devices (see
http://www.vmware.com/pdf/esx_io_guide.pdf for
reference), similar to the range of devices that can be
attached to most Linux servers.

Relying on the VM Host software to provide native device
drivers to support all attached physical devices is not the
only way to achieve virtualization’s goals. The VMware
GSX and Workstation products, as well as the Microsoft
Virtual Server 2005 product based on the software
Microsoft originally acquired from Connectix in 2003,
provide virtualization software that is installed on top of a
standard Windows OS installation. This approach allows
you to install and run native Windows device drivers, which
are more widely available for some peripherals than Linux
drivers. Native Windows device drivers typically exploit
Windows Plug-and-Play technology during installation and
set-up. They frequently also have more elaborate feature
sets and user interfaces than their Linux counterparts. The
ESX dedicated Virtual Machine Monitor approach permits
a greater degree of vm guest isolation, such that a problem
with a device driver on one virtual machine guest is less
likely to impact other vm guests that offer shared access to
the same device. The ESX Host software also supplies a
dedicated Scheduler service, as illustrated, to dispatch VM
guests, rather than rely on the standard Windows priority-
based thread Scheduler which was never designed with
virtualization in mind.

A third design alternative is the approach used in the Xen
project where the VM Host software virtualizes its devices,
which allows it to rely on native devices drivers installed on
the guest OSes to communicate directly to attached
peripherals. While Xen’s approach allowing for native
guest OS device drivers has many commendable virtues
(see [7] for details), Xen is not transparent to the guest OS.
In fact, in Xen the guest OS must be modified to run under
Xen. Relaxing the transparency requirement means in
practice that Xen cannot currently host Windows guest
machines today, so any further discussion of its creative
approach to virtualization is beyond the scope of the present
essay.

When you set up a Windows server guest machine to run
under either VMware ESX or MS Virtual Server 2005, the
guest OS sees only the virtual disk, network, and video
devices exposed by the VM Host software. The VM Host
software exposes a limited set of generic devices that the
guest OS detects, configures, and uses. In the case of ESX,
it also limits the number of logical processors that the guest
OS is able to detect. (This was recently raised to a
maximum of four CPUs per guest machine in ESX version
3.)

Both the VMware Host and Virtual Server 2005 also inject
one or more service processes into the guest Windows
machine. These are used to facilitate communication
between the Host and the Guest. In the case of ESX, the
Windows guest OS runs VMWareService, plus the
VMWareTray and VMWareUser processes.
Communication between the VM Host and the Windows
Guest OS occurs across a virtual NIC that simulates a
generic AMD PCNET Family Ethernet adapter. (Host-guest
machine communication in Virtual Server 2005 is similar.)
From a performance monitoring perspective, when ever you
can detect that the VMWareService process is active, then
you can accurately deduce that the machine in question is a
virtual machine guest.

4.0. Sizing virtualization environments
today
So long as the virtualization technology being deployed was
confined primarily to assisting with software development
and testing, the technology raised few pressing capacity
planning or performance concerns. (Running the sort of
application stress-testing workload where performance
actually mattered could always be diverted to a dedicated
machine. See [4]). It was only when this same virtualization
technology was re-positioned as a way to achieve server
consolidation that serious capacity planning and
performance considerations began to surface.

In principle, capacity planning to size the machine hosting
two or more virtual machines should be quite simple. It
corresponds to the problem of folding n virtual machines
into one container, the machine that hosts the VM Monitor.
It does require an optimal solution over time that factors in
whether individual workload peaks overlap or not. (If you
can consolidate non-overlapping workloads, you can

achieve significantly more efficient operations.) Some care
must be taken to ensure that the solution is optimal across
multiple dimensions where each dimension corresponds to
utilization of some physical resource that the host machine
must apportion among the guest machines – the processor,
RAM, the disks, and the network interfaces. To the degree
that generously-sized current hardware capabilities often
lead to machines that appear to be massively over-
provisioned, sizing the host machine ought, in principle, to
be relatively easy.

4.1. Sizing the processor. The processor, for example
should be large enough to handle the sum of the processor
demand from each configured virtual machine, plus some
additional headroom to accommodate some amount of the
inevitable virtual machine management “overhead” (to be
dissected in somewhat more detail below):

Physical CPU Capacity > VMM management overhead +

∑(VM-Guestn CPU + Overheadn)

In the case of sizing the processor, at least three major
sources of VM overhead can be identified. In [8], Gunther
identifies the VMM Scheduler that is responsible for either
round-robin or weighted dispatching of virtual machine
guests as one source of overhead. Gunther relies on a
VMware-published ESX benchmark [9] that shows that this
management overhead is minimal and well-behaved. It
appears to scale linearly with the number of VM guests that
are defined. The ESX benchmark data from [9] is
summarized in Figure 2 for a four-way machine.

The benchmark workload in [9] is severely CPU-
constrained. It is also designed to minimize the other two
major sources of VMware management overhead. Notice
that overall throughput tails off slightly as more virtual
machines are configured to run than there are physical
processors available to run them. Therefore, the difference
between the dotted horizontal line at the top of the chart
identified as “theoretical” and the actual Completion rate
represents the processor scheduling overhead. The
scheduling overhead per guest machine can be calculated
as:

(Theoretical – Actual throughput) * 100 / Theoretical
throughput / # of VMs

ESX scalability on a CPU-bound workload

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

of Virtual Machines

Th
ru

pu
t

0

1000

2000

3000

4000

5000

6000

Se
co

nd
s

Completion Rate
No Management Overhead (theoretical)
Actual Completion Rate

Figure 2. ESX scalability on a CPU-bound workload.
Taken from benchmark results published by the
VMware Corporation. [8]

In [10], Menascé identifies a second source of virtualization
processor “overhead,” which arises because the guest OS
executes in User mode (Ring 3 on an Intel processors).
Under VMware, every time an OS function inside the guest
machine attempts to issue a privileged instruction, a
hardware exception is raised. The VM Host interrupt
handler has to trap this exception and recover from it. It
does this by emulating the privileged instruction issued by
the guest OS that failed. In practice, the emulation routine
can be quite involved, depending on the function that
VMware must mimic.

To illustrate this process, let’s look, for example, at what
happens when the guest OS needs to perform an I/O
operation to disk. In the course of generating an I/O request,
the Windows kernel-mode I/O Manager and the physical
disk device’s associated driver code normally operate
exclusively in Privileged mode, or Ring 0. In the
virtualization environment, all of this code is executed in
User mode, or Ring 3. Whenever any kernel mode
instruction that is only valid in Privileged mode is issued in
User mode, the instruction fails. At this point, the VM Host
software intervenes. After trapping the invalid instruction
interrupt that occurs, the VM Monitor runs an emulation
routine that mimics the original intent of the guest OS, and
then returns control to the guest machine. Menascé
characterizes this overhead in modeling terms as an
execution delay, which it certainly is. In the virtualization
environment, each attempt to execute a privileged
instruction by the guest OS is replaced by an interrupt, the
execution of the VM Host interrupt handler, and, finally,
the execution of the emulation routine. The instruction path
length associated with the function increases enormously.
Unfortunately, the full extent of the associated delay is
impossible to characterize accurately without measurements
taken by the VM Host on the number of privileged
instructions emulated, which are currently not forthcoming.

One idea is that the delay associated with emulating
instructions that require privileged mode is proportional to
the amount of time the guest OS spends in kernel-mode (%
Privileged Time). This is a helpful suggestion, but hardly a
precise way to proceed. Very few of the instructions
executing in kernel-mode are privileged instructions, but,
this depends on the OS function being executed.4 Device-

4 The implications of this last statement on secure, protected mode
operations are wide-ranging [16]. Windows relies upon the
privilege level to isolate processes from each other and from the
protected mode operating system supervisor. For example,
memory protection is used to ensure that a User process cannot
access a memory location in the system range. On Intel hardware,
even though there are four instruction execution privilege levels –
or Rings – there is only a single bit privilege-level associated with
a page table entry. (On recent Intel processors, the four privilege
Rings have been collapsed into the two that Windows actually
uses.) The normal protection memory mechanism used in

driver functions that issue instructions that reference
physical addresses (not virtual ones) require Privileged
mode to succeed. Major OS functions related to I/O
processing in general, including the Cache Manager, the
Workstation and Server services, processing within the
TCP/IP stack, and the new kernel-mode http.sys driver in
IIS 6.0, all make extensive use of physical addressing
mode. The performance of all of these functions suffers in
the virtualization environment, in some cases prohibitively
so.5

A third source of virtual machine management overhead is
a doubling of the number of instructions to initiate I/O
operations and to service I/O completion interrupts. When a
hardware-related device interrupt occurs, the native device
driver code running in the VM Host software layer is driven
initially. Once the native device driver services the
interrupt, the VM Host software must determine which
guest OS initiated the request and how to map the physical
request into the appropriate virtualized context. Once this is
accomplished, the VM Host software queues a virtual
interrupt for the guest OS, which must then await
dispatching by the VM Host guest machine Scheduler
before the guest machine can detect that a device interrupt
has occurred and process it. (This leads to delays in I/O
interrupt servicing that are discussed in section 4.3.) When
the device interrupt is received by the guest OS, its version
of the interrupt handler is then dispatched to deal with it.
Clearly, two similar sets of code are traversed, where only
one set would be executed in a native run-time
environment.

For Windows guest machines running under VMware, the
sum of the amount of % Interrupt Time and % DPC Time
recorded at the Processor level when the system was

Windows relies on the hardware to trap an instruction issued in
User mode that references a memory location in the system
address range. But in the virtualization environment, all kernel
mode functions run in User mode. Unfortunately, VMware
documentation is silent on the precise mechanisms used to
maintain the security of the protected-mode Windows kernel by
preventing User-mode instructions from accessing system
addresses. Performance implications would likely preclude having
every guest OS kernel-mode instruction fail whenever it attempted
to access an address in the system range, so it is probably safe to
assume that all memory locations associated with the guest OS are
marked in the actual PTEs maintained by the VMware Host
software as non-supervisor state allocations.

5 Menascé [8] suggests that the cycles lost to privileged
instruction emulation are at least partially offset by running the
virtual machine on a correspondingly faster processor. While this
is a worthy suggestion, it is not the end of the story. If you are
consolidating workloads running on previous generation hardware
onto new machines where a virtualization engine is installed, the
newer machines are likely to have a clock rate that is twice as fast.
However, the virtualization cost of emulating guest OS privileged
instructions is on the order of hundreds, if not thousands, of
additional instructions to be executed, compared to one.

running in native mode provides a good estimate of the
amount of additional CPU time that the VM Host software
will require to process device interrupts on behalf of the
guest machine.

4.2. Sizing RAM. In the case of sizing RAM, the memory
requirements of a Windows guest can usually be reliably
estimated by subtracting the Memory/Available Bytes
counter from the size of RAM when the machine runs
natively. VMware advises allowing for an additional 32
MB of RAM per virtual machine, plus the VM Host
software itself, which requires about 400 MB of RAM.
VMware must also provide a shadow copy of every page
table entry (PTE) that is present on each guest OS (note that
page tables are built per process). The VM Host software
must intervene on every context switch to override the
attempt by the guest OS to establish a new virtual
addressing context.

VMware exploits the shadow PTE mechanism to wring
some counter-balancing efficiencies from the virtual
memory management process. Guest machines that have
memory resident pages that are identical are able to share a
single, memory-resident copy of the page. This effort is
more noteworthy for the effort involved in identifying
pages that are eligible to be shared, than the result, which is
limited when very heterogeneous servers are consolidated.
In the case of homogenous workloads, Waldpurger in [17]
reports an impressive level of savings, nearly 40% in the
case where 10 guest machines all running Windows NT 4.0
were defined. Nevertheless, consolidating the workloads
under a single OS image where possible remains the
superior approach. In Virtual Server 2005, a full
complement of RAM on the host machine must be provided
to the guest OS or else the guest machine simply will not
boot.

The VMM maintains a single set of page tables that the
virtual address translation mechanism in the hardware
recognizes, which essentially duplicates the virtual address
mapping information that each guest OS must itself
maintain in virtual memory. It should go without saying
that you would not want to configure a memory-constrained
guest OS that had high paging rates. VMware uses a
technique called ballooning [17] where it injects a device
driver into a guest OS that ties up large amounts of physical
memory in order to force the guest OS to trim unused
virtual memory. Ballooning thus allows VMware to defer
making page replacement decisions to the guest OS, which
is in a far better position to make them intelligently. The
ability of Windows Server 2003 to communicate directly
with server applications that perform their own memory
management (predominantly in support of I/O buffering)
[13] suggests ballooning could be quite effective in this
environment. The VMware Host software can determine
which memory locations the OS has freed up by examining
the guest OS page tables. Then VMware can re-distribute
these available pages to other guest machines.

4.3. I/O interrupt delays. While not necessarily a capacity
issue per see, the foregoing catalog of the performance

issues impacting the scalability of virtualization technology
would not be complete without some mention of significant
interrupt processing delays that can easily arise. Significant
interrupt delays are likely whenever there are more virtual
machines defined than there are physical processors to run
them. The problem can grow acute when some of the
virtual machine workloads are I/O bound.

In a virtualization environment, servicing a high priority
device interrupt becomes a two stage process. The VM Host
driver software services the native device interrupt on
demand as a necessarily high priority operation that
preempts any lower priority task that is currently
dispatched. One effect of this is that a guest machine that is
currently dispatched can be interrupted by an I/O
completion that was initiated by a different virtual machine.
After the VM Host software services the interrupt, it queues
a virtual interrupt to be processed by the initiating virtual
machine. The virtual machine waiting on the interrupt may
also be waiting to be dispatched on the VM Host queue.
The guest machine cannot service the interrupt until the
next VMware Host Scheduler interval in which it is
scheduled to run. Any dispatchability delays effectively
increase the time it takes the virtual machine to process
device interrupts. This interrupt processing delay can be
considerable.

Past experience with virtualization technology in the
mainframe world (see, for example [11]) shows that I/O
bound virtual machine workloads are prone to a secondary
effect if they suffer extended periods when they are
ineligible to be dispatched to service the interrupts they are
waiting for. I/O interrupts that are queued to be serviced
can only be processed when the virtual machine is finally
dispatched. The effect is to stagger interrupt processing at
the guest machine in a manner that leads to a skewed arrival
rate distribution, a worst case that maximizes the queuing
delays that are experienced. Ultimately, this secondary
effect proved so powerful that the dispatcher mechanisms in
mainframe partitioning schemes had to be modified to
counteract it. The same behavior is currently evident in the
virtualization solutions available for the Windows platform.

The performance of virtual machines during I/O intensive
operations like back-up illustrates the problem. Suppose the
virtual machine running the back-up task is one of two
virtual machines vying for a processor. When the vm is able
to execute, it usually has a backlog of I/O interrupts to
service. After the interrupts are serviced and the next I/Os
in the sequence are initiated, there may be little or no other
processor-oriented work that needs to be done. So the
virtual machine idles its way through the remainder of the
time slice that it is eligible to run. When its time slice
expires, the virtual machine waits. Meanwhile, some of the
I/Os that were initiated during its last cycle of activity
complete. But they cannot be serviced because the vm is
not eligible to be dispatched. At the next interval where the
vm is dispatched, the cycle repeats itself. Compared to
running native, the I/O throughput of the virtual machine is
slashed by 50% or more.

Currently, the only way to minimize the impact of this
scheduling delay is to configure an I/O bound workload so
it has access to at least one dedicated physical processor.

5.0. Performance expectations.

The previous section discusses some of the important
architectural features of the virtualization software available
for the Windows platform that have a major performance
impact. Focused primarily on the popular VMware ESX
package, it identified virtualization overheads that need to
be factored into an initial server sizing effort. In this section
we discuss the performance impact of the architectural
features that were described in section 4. It is important to
have some reasonable expectations about the performance
of your applications once you start running them under
virtualization.

In the area of processor utilization, three main issues were
raised in section 4 that impact capacity. This section
focuses on their performance impact.

• Virtual machine guests are subject to either round-
robin or time-weighted dispatching by the VM
Host software on the physical processors assigned
for their use. (In VMware ESX version 3, a guest
machine can be assigned to use from 1-4 physical
processors.) The VMware Scheduler overhead
used to switch the processor between virtual
machines is minimal, but scales linearly with the
number of virtual machines that are defined.

For any given processor workload, instruction execution
throughput is degraded in proportion to its scheduling
weight and the contention for the physical processors from
virtual machines. VMware claims that ESX can detect
when a virtual machine is idle, and will dispatch a different
eligible virtual machine when it does so. This is critical to
the performance of Windows guests because Windows does
not issue a processor HLT instruction when it has no work
to do [13].6 Using a periodic timer check, the interval of
which is currently set to 1.5 milliseconds by default, the
ESX Host Scheduler would have an opportunity to preempt
an idle virtual machine, assuming it can detect the system
state reliably.

Using a series of benchmarks, Shelden tried to characterize
ESX processor dispatcher queuing delay in [14], which he
discovered could be substantial. He found, for example, that
when a virtual machine was eligible for multiple
processors, VMware dispatched the guest OS on both
processors (ESX version 2) simultaneously. This technique,

6 It is not clear how this Idle Loop detection algorithm works or
how effective it is in ensuring that idle Windows guests do not
waste processor cycles. As reported in [13], the Windows Idle
loop is a succession of no-op instructions issued from the HAL.
On machines that support APCI power management, the HAL
transfers control from the Idle loop to the processr.sys driver
module to take appropriate action, which may include slowing
down or powering off the processor.

which VMware calls co-scheduling, provides a consistent
multiprocessor environment for the guest OS, but it also
means potentially significant dispatching delays when there
is contention among virtual machines for the processor.

Shelden’s results suggest that co-scheduling virtual
machines causes significant performance degradation when
there is CPU contention among the OS guests. Performance
analysts need to be on the lookout for runaway application
threads that are looping, something that sites can blithely
ignore in many dedicated server application environments.
A guest machine running a thread stuck in a loop has the
potential to create significant contention for any processors
it shares with other guest machines.

• The guest OS is run in User mode. All attempts by
the guest OS code to issue privileged instructions
are trapped by the VM Host software and
emulated. The additional interrupts that are
generated (due to the failed instructions) and the
emulation code that substitutes for the original
instruction add significant path length to routine
attempts by the guest OS to execute privileged
instructions.

Server applications that rely on physical addresses are
likely to be the most vulnerable to this delay. The general
mechanism used in Windows to make physical addresses
available to device driver and other system modules is for
them to allocate memory in the system’s Nonpaged Pool.
This should make it relatively easy to identify applications
that are subject to this delay. Any Windows server
application that makes extensive use of physical addresses
are potentially vulnerable.

When issued by a virtual machine guest running in User
mode, the privileged instruction to disable paging in order
to utilize physical addresses or to re-enable paging when it
is safe to do so fails. The failed instruction must then be
emulated by the VM Host software. Extensive VMware
Host intervention is required to perform these functions,
which are associated with high performance DMA device
controllers. Windows has a number of subsystems that
remain in kernel-mode so that they can work directly with
DMA controllers and utilize physical addresses. These
include the MDL Cache interface (MDL stands for Memory
Descriptor List) used by the file Server service and IIS.
High performance Fibre Channel and SCSI device drivers
also make extensive use of physical addressing and MDLs.

For example, the http.sys driver module introduced in IIS
6.0 can process Get Requests for static html objects entirely
in kernel-mode. In IIS 6.0, TCP/IP, also running in kernel
mode, queues an HTTP Get Request object to an http.sys
worker thread. The worker thread has access to a physical-
memory resident look-aside buffer (known as the Web
Service Cache) where fully rendered HTTP Response
objects are cached. If a cache hit occurs, the HTTP
Response object can then be transferred from the cache to a
physical memory-resident MDL output buffer for
transmission by the NIC back to the requestors IP address

without leaving kernel mode. For the sake of efficiency,
this process relies on instructions that are accessing
physical memory addresses directly.7

• The guest OS code to initiate and service I/Os is
executed twice, once by the guest OS and a second
time by the native device drivers running on the
VM Host. This slows down the execution of both
disk and network operations.

This strongly suggests that I/O bound workloads with
critical performance requirements – and that includes
network I/O of all types – should be run in native mode, not
as virtual machine guests. Workloads that are not primarily
I/O bound may still have periods where I/O performance is
critical. It may be necessary, for example, to migrate guest
machine back-up operations to a VM Host native back-up
operation if back-ups cannot complete in the window that is
available. The performance trade-off here is that VM Host
native back-up operations view the guest machine’s disk
storage as a container file that must be backed up or
restored in its entirety. Application-level file back-ups, like
those performed on SQL Server or Exchange databases,
must be run on the platform that runs the application. Of
course, this type of application server may fall into the
category of I/O bound workloads that need to run natively
anyway.

The likely bigger concern for I/O bound workloads is where
there is processor contention among virtual machine guests
and I/Os to the guest OS remain pending during relatively
long periods when the virtual machine is not eligible to be
dispatched, as discussed in section 4.3.

• The balloon technique which forces page
replacement back to the OS in various guest
machines, along with the ability to share common
pages among homogenous guests, makes memory
management relatively efficient in the
virtualization environment. Whatever additional
memory that is required in the VM Host software
and on VM guests to make virtualization work can
be offset by this bag of clever memory
management tricks.

• The simple virtual machine processor dispatching
method used in VMware, along with the co-
scheduling of processors to virtual machines
defined to run on multiprocessors, leads to long
delays in I/O interrupts processed by the guest OS.
This, in turn, can lead to an artificial staggering in
the rate of I/O initiation and completion. This
secondary effect of the virualization engine’s
Scheduler can have a large negative impact on
even modestly I/O bound workloads.

The cumulative effect of these negative performance
impacts can be substantial. Shelden’s benchmark testing

7 The popular Apache web server application that runs primarily
on Linux has comparable facilities.

[14], which was designed to isolate the performance impact
of the VMware ESX processor scheduler showed
significant degradation due to co-scheduling. In a test case
where two virtual machines were active, each with two
active threads, each capable of consuming approximately
55% of a processor in a conventional environment, overall
utilization of each physical processor in the 2-way VM
Host machine managed to reach only about 65% busy,
instead of an expected 100% busy. One explanation is that
the VM Host software was unable to detect correctly when
a Windows processor is idling. Another possibility that
Shelden explores is that processor co-scheduling requires
that physical processors be assigned to virtual machines in
tandem. When Shelden changed his simulation to use a
Dispatch in Pairs scheduling algorithm, instead of the
expected Dispatch When Ready, his simulation results were
a significantly better fit to the actual data.

In [8], the principal researchers behind the development of
Xen compare and contrast the performance of native Linux,
Xen, and VMware Workstation on a series of benchmarks.
Figure 3 below summarizes three of the comparisons: a
CPU stress test running specint; a database-oriented
benchmark; and the SpecWeb99 test suite that is a very
comprehensive test of web server capabilities (it stresses the
CPU, the network and the disks). On the CPU-bound
workload, VMware results keep pace. But on the database
and web server workloads, VMware lags native
performance considerably. On the web server tests, the Xen
developers observed, “VMware suffers badly due to the
increased proportion of time spent emulating ring 0 code
while executing the guest OS kernel.”8

Virtualization performance relative to native performance

0

0.2

0.4

0.6

0.8

1

1.2

specint osdboltp specweb99

Benchmark

Re
lat

ive
 p

er
fo

rm
a

Linux

Xen

Vmware

Figure 3. Benchmark results comparing native Linux,
Xen, and VMware on three different workloads. From a

8 The Xen developers were prohibited from reporting comparable
results with the ESX Server software due to the vendor’s licensing
restrictions. Perhaps we can assume that ESX performed better,
but not so much better that VMware was willing to grant
permission to publish the ESX test results. To date, VMware has
only made public benchmark results for ESX running a CPU-
bound workload similar to the one showed in Figure 3.

paper written by the principal developers of Xen at
Cambridge University. [7]

The benchmark results presented by VMware in [8] on a
CPU-bound workload are consistent with the specint
workload shown in Figure 3. It tells only part of the story.
The memory-resident, compute-bound workload discussed
in [8] ignores significant sources of delay that typically
accompany virtualization for Windows guest machines.
Performance of workloads where there is a significant
amount of thread and process context switching, interrupt
handling, and I/O in general suffer from significant
performance degradation. Section 9 will look briefly at the
coming generation of processor hardware that has built-in
virtualization capabilities. These are designed to
significantly reduce these sources of performance
degradation that are evident today. Until that hardware is
available and a new generation of virtualization software is
developed to exploit it, you need to have realistic
expectations for the performance of virtualization solutions
for Windows.

7.0. Monitoring the virtualization
environment.
Performance monitoring for virtual machines running under
VMware ESX is complicated today because many of the
familiar guest OS measurements become difficult to
interpret and cannot be relied upon. It is necessary to
augment guest OS monitoring procedures with
measurements from the VM Host software, especially
regarding the use of the processor by various guest
machines. Fortunately, VMware ESX does provide some
necessary processor utilization statistics, but it lacks
measurements that can give you a clear picture of what is
going wrong when performance issues surface.

One side-effect of the two-step process in which device
interrupts are handled by the VM Host software is that the
timing mechanisms on a Windows guest machine are not
reliable. This affects all timer-based measurements that any
performance monitoring software running inside the
Windows guest makes, including the % Processor Time
utilization measurements at the Thread, Process, and
Processor level and the Avg. Disk Secs/Transfer response
time measurements for both Logical and Physical Disk.

The Processor utilization measurements in Windows are
derived from samples taken once every clock interval. (See
[13] for details.) The precision of the system clock is
maintained as if ticks occur every 100 nanoseconds. In
reality, the system clock time is updated much more slowly,
normally about once every 5-10 milliseconds, depending on
the machine. In official Microsoft documentation, this
duration between clock ticks is sometimes referred to as the
periodic interval. The mechanism used to maintain the
system time is a timer interrupt that is set to fire regularly

every periodic interval.9 When the timer interrupt occurs,
the Windows OS advances the system clock. It also samples
the state of the machine at the time of the interrupt and
determines what thread from what process was running
when the clock interrupt occurred. All of the processor
utilization measurements at the thread, process, and
processor level are based on this sampling technique.

The high priority clock interrupt that Windows relies upon
to keep time internally and for all its measurements of
processor utilization is subject to interrupt pending delays
in a virtualization environment. The periodic interval that
Windows relies upon to keep accurate time is subject to
erratic behavior, as documented in [15]. Consequently, the
processor utilization samples that Windows gathers are no
longer uniformly distributed in time. This should not
invalidate the measurements completely, especially when
you are looking at long enough intervals with sufficient
samples to minimize normal sampling error. However,
Windows performance monitoring software does not have
direct access to the number of processor utilization samples.
The utilization metrics the software calculates are based on
the assumption that the intervals between samples are
uniform. Obviously, this is not correct in the virtualization
environment. The resulting calculation of % Processor
Time is subject to major error because VMware does not
deliver virtual clock interrupts at uniform time intervals.

A number of knowledgeable observers have puzzled over
the interpretation of the processor utilization measurements
that rely on this timing mechanism when they are taken in a
virtualization environment. They have had little success
trying to make sense of the normally reliable processor
utilization measurements provided by the Windows guest
machine and and even less correlating them with
measurements taken by the ESX host software. See for
example, [3] and [14]. The problem is that it is difficult to
know what to make of any of the Windows % Processor
Time measurements (all counters of type
PERF_100NSEC_TIMER are impacted) as calculated by
the Windows guest OS. The way interrupts in general, the
clock interrupt included, are stacked up waiting for service
when the virtual machine is finally dispatched undermines
the uniform sampling methodology that Windows relies on
in its % Processor Time calculations.

9 The timer is a peripheral device on the Intel platform – it
normally resides on one of the supporting chip sets external to the
processor. Because the clock timer is a peripheral, it requires an
I/O operation to access the current clock value. Intel processors
beginning with the Pentium do contain a Timestamp Counter
(TSC) that reflects the internal frequency of the microprocessor
and the TSC can be used very efficiently to time the duration of
any event. VMware ESX, in fact, uses the TSC for its
measurements of processor utilization. But the TSC can only be
used to tell time, it cannot be used to generate an interrupt at some
future point in time. On Intel microprocessors with power-saving
features, the TSC does not maintain a constant uniform clock rate,
which is a function performed instead by the ACPI Timer.

Direct measurements taken by VMware ESX are necessary
to augment the guest OS measurements. (Generous portions
of ESX version 3 and its Infrastructure add-ons appear to be
devoted to performance monitoring.) ESX version 2
currently provides an interface to allow programs running
on the VM guest to pull performance metrics, including the
Total CPU Seconds used by the VM (in milliseconds). At
least one third party performance monitoring product
currently supplies measurements of VM Guest CPU %
Used and % Ready (purportedly, the percentage of time a
guest OS was Ready to run on the VM Host, but was unable
to). Consolidating this information with data from various
guest machines is always a challenge, of course.

Even though Windows presents system timer values in ticks
of a 100 nanosecond clock, the system time value is
actually only adjusted every periodic interval. The actual
granularity of clock intervals is in the range of 5-10
milliseconds, as discussed above. This granularity proved
too coarse for many performance-oriented measurements.
So, beginning in Windows 2000, a new timer facility based
on the TSC was introduced. This newer timing facility, also
known as a high precision clock, is accessed using the
QueryPerformanceCounter Win32 API call, somewhat
inappropriately named because it is a general purpose
interface that issues the RDTSC instruction.

In VMware, the TSC is virtualized and the RDTSC
instruction, which can only be issued in privileged mode, is
emulated. [15]. In [15], VMware warns,

Reading the TSC takes a single
instruction (rdtsc) and is fast on real
hardware, but in a virtual machine this
instruction incurs substantial
virtualization overhead. Thus, software
that reads the TSC very frequently may
run more slowly in a virtual machine.
Also, some software uses the TSC to
measure performance, and such
measurements are less accurate using
apparent time than using real time. In a
virtualization environment, there is no
guarantee that the I/O interrupt from the
clock will be issued or serviced by the
guest OS in a timely manner.

The Windows performance measurements that are impacted
by this anomaly are the Logical and Physical Disk % Idle
Time counters that measure disk utilization, one of several
disk performance counters of type
PERF_PRECISION_100NS_TIMER. The accuracy of the
Avg. Disk secs/Transfer counter that furnishes disk
response time measurements is also suspect in a VMware
environment. Both the Logical and Physical Disk
measurement layers in the I/O Manager stack issue a call to
QueryPerformanceCounter at the start and end of every I/O
operation. Unfortunately, native ESX only measures disk
and network throughput per virtual guest, which does not
close the gap that not having these important guest OS disk
performance statistics leaves.

8.0. Alternatives to virtualization.
Given these drawbacks in current virtualization technology,
it is reasonable to ask why more IT departments do not
embrace consolidating single application server workloads
under a single OS image. If the problem is indeed too many
OS machines (and machine images) to manage, why not
consider consolidating multiple workloads under a single,
native OS image. All in all, we see little reason today to
prefer server consolidation using virtualization, which does
not actually reduce the number of machine images that need
to be managed, to workload consolidation under a single
OS image, which does.

One reason for not consolidating workloads on a single
image of the Windows OS is that the practice cuts across
the grain of the institutionalized procedures that have grown
up for testing deploying stable OS images, as discussed at
the outset. For capacity planning, performance, and tuning
issues, running isolated Windows machines running single
applications was preferred in the past. The present author
made a strong case for this administrative practice in [1] as
far back as 1996 and more recently in [2]. The case for
deploying single server application machines is
substantially weaker today due to (1) major improvements
in Windows Server and server application reliability, (2)
increased flexibility to configure and manage
heterogeneous workloads in IIS and SQL Server, (3) the
capability to manage the performance of heterogeneous
workloads using WSRM, and (4) the relief from virtual
memory constraints that the 64-bit version of the OS grants.
Let’s consider each of these areas of improvement in more
detail below.

For the Microsoft Windows server platform, there are two
web-based services designed to improve reliability that are
very visible. These are (1) the Automated Update feature
that automatically delivers maintenance to the OS and its
server applications, and (2) the facility to gather
information about application program failures
automatically and send data on these failures to Microsoft
for analysis. The failure analysis program allows Microsoft
to gather information on what problems are occurring and
allocate resources appropriately to fix the more common
and serious ones. As fixes to the software are developed,
the Automatic Update service can deliver them to the
machines that are experiencing the problems.

Another set of reliability improvements that is not as visible
to system administrators, but is no less important to the
cause of system stability is a series of initiatives to improve
device driver reliability. Bugs in device driver code have
historically been one of the most common causes of serious
reliability problems. Microsoft has several programs to
improve the quality of device driver code. It has made
significant enhancements to the OS so that it can detect
malfunctioning device drivers and recover better from these
malfunctions. The result of all these initiatives is to improve
the quality of the OS and driver code, which leads to
significantly better reliability.

With the Web Gardens architecture developed for IIS
version 6 and the multiple instance feature of SQL Server
2000, it is now possible to configure and manage multiple
web sites and application databases under a single OS
image. Using the Web Gardens feature of IIS 6.0, you can
define multiple Application Pools. Then you can assign
specific web sites to a specific Application Pool. Each
Application Pool consists of one or more worker processes
that run in isolation from each other. The health and
performance of each Application Pool can be managed
separately as well. With both SQL Server 2000 and 2005, it
is possible to execute multiple instances of the sqlservr.exe
process. Each copy of SQL Server can be managed
separately, using processor affinity and memory working
set settings to keep them from contending with each other
for these system resources. The multiple address spaces
available to web server applications and the DBMS also
assist in scalability of these server applications on virtual
memory-constrained 32-bit machines. [13]

Initial versions of the Windows server platform lacked any
sort of built-in, system-wide tuning apparatus designed to
help system administrators automatically balance resource
usage among competing workloads according to some
established set of management goals or priorities. A
performance management framework that is capable of
adjusting the priorities of various workloads automatically
during times of stress makes it easier to configure and
manage environments where heterogeneous workloads
must co-exist on the same machine. In such an
environment, whenever key shared computer resources
such as the processor, memory, the disks, or the network
become over-committed, the performance management
framework can detect these conditions and intervene
automatically, favoring higher priority workloads at the
expense of lower priority ones.

As discussed long ago in [2], what performance
management tuning knobs, options, and controls that did
exist in Windows were initially available mainly at the
application level. Moreover, the default values for the
configuration parameters available for server applications
like SQL Server, Exchange, the built-in Internet
Information Server usually assumed that the application
was being run on a dedicated server. Over-provisioning
these machines to run a single workload or service is one
handy way to deal with otherwise thorny capacity planning
and performance and tuning issues because it ensures they
surface only rarely.

In Windows Server 2003, Microsoft introduced the
Windows Server Resource Manager (WSRM) utility that
does provide system-wide, policy-based performance
management capabilities. Using WSRM, the system
administration can define workload categories. Based on
the current resource utilization of the defined workloads,
WSRM can dynamically adjust their dispatching priority
when there is contention. WSRM controls can also be used
to manage physical memory allocations and processor
affinity settings. WSRM controls do not supersede the

application-level settings that can be used to control SQL
Server or IIS. But they do make it possible to manage any
other servers applications you need to run from a system-
wide perspective.

Finally, it is important to remark on the relief from 32-bit
virtual memory constraints that the availability of 64-bit
machines and a 64-bit OS provides. Even 32-bit
applications gain some relief from virtual memory
constraints in 64-bit Windows – they can expand to use a
full 4 GB User private area. Native 64-bit applications like
SQL Server 2005 currently have a huge 16 TB virtual
addressing range available to them. Running the 64-bit OS
is another way to consolidate workloads from multiple
servers and run them effectively.

The same system administration practices and procedures
that are adequate for running isolated, single application
servers fall short of what is required for multiple workloads
consolidated under a single OS image. In particular, both
proactive performance management of the sort discussed in
[13] and capacity planning and prediction are necessary to
ensure that such machines run smoothly. Arguably,
however, this is no more effort than the one required to
manage a complex virtualization environment effectively.
In fact, the performance and capacity planning effort
necessary to assure stability in both environments appears
to this observer to be very similar.

9.0 The Future of Virtualization.

Both Intel and AMD have announced strikingly similar new
hardware designed with virtualization in mind. The Intel
initiaive is called VT, while the AMD product is called
Pacifica. This new hardware, scheduled to be available in
2006, adds a new privilege level where the virtualization
monitor will run. That will allow the virtualization monitor
to run a guest OS at its normal ring 0 privilege level,
rendering current privileged instruction emulation
techniques obsolete. The new hardware will also include
new new instructions to allow the Virtual Machine Monitor
to launch a guest virtual machine and facilitate
communication between a guest OS and the VM Host
software layer.

The new hardware appears to address the performance
problems discussed here that plague the current
virtualization solutions. Of course, a new generation of
virtualization software will be required to exploit the new
hardware. Both of the leading vendors of virtualization
software report that they are actively working on new
versions that will support the new hardware. With the right
software support, for example, the new hardware
environment could allow preferred guest machines to
access native devices for better performance, although
today we can only speculate about when virtualization
software to permit that will be available.

References.
[1] Friedman, M., “Can Windows NT be tuned?” CMG

Proceedings 1996.

[2] Friedman, M. and Pentakalos, O., Windows 2000
Performance Guide, Boston, MA: O’Reilly Associates, 2002.

[3] Fernando, G., “To V or not to V: a practical guide to
virtualization,” CMG Proceedings 2005.

[4] Friedman, E., “Tales from the lab: Best Practices in
application performance testing,” CMG MeasureIT,
November 2005, available at
http://www.cmg.org/measureit/issues/mit27/m_27_10.html.

[5] Seawright, L., and MacKinnon, R., “VM/370 – a study of
multiplicity and usefulness, IBM Systems Journal, 1979, p. 4-
17.

[6] Intel Virtualization Technology Specification for the IA-32
Intel Architecture,
ftp://download.intel.com/technology/computing/vptech/C970
63-002.pdf.

[7] Barham, et.al., “Xen and the Art of Virtualization,”
University of Cambridge Computer Laboratory, published at
SOSP 2003, available at
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-
xensosp.pdf.

[8] “ESX server performance and resource-management for
CPU-intensive workloads.” Available at www.vmware.com.

 [9] Gunther, N., “The Virtualization Spectrum from
Hyperthreads to Grids,” CMG Proceedings 2006.

[10] Menasce, D., “Virtualization: concepts, applications and
performance modeling,” CMG Proceedings 2005.

[11] Young, D., “Partitioning Large Processors,” CMG
Proceedings, 1988, p. 67-74.

[12] “VMware ESX Server 2: Architecture and performance
implications,” Available at www.vmware.com.

[13] Friedman, M., Windows Server 2003 Performance Guide, a
volume in the Microsoft Windows Server 2003 Resource Kit,
Microsoft Press, 2005.

[14] Shelden, W., “Modeling VMware ESX performance,” CMG
Proceedings 2005.

[15] “Time-keeping in VMware virtual machines,” Available at
www.vmware.com.

[16] Robin, J.S., and Irvine, C.E., “Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor,”
Proceeding 9th USENIX Security Symposium, 2000. Available
at
http://www.cs.nps.navy.mil/people/faculty/irvine/publication
s/2000/VMM-usenix00-0611.pdf.

[17] Waldspurger, C., “Memory Resource Management in
VMware ESX Server,” Proc. Fifth Symposium on Operating
Systems Design and Implementation (OSDI ’02), Dec. 2002.
Available at http://www.waldspurger.org/carl/papers/esx-
mem-osdi02.pdf.

	CMG 2006 Main Menu
	Papers by Subject
	Papers by Author
	Acrobat® Help
	Search

