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The Reality of Virtualization for Windows Servers 
Mark Friedman 

Demand Technology 

Abstract. 
This paper discusses the performance and capacity concerns that arise when Windows servers are run as virtual machine 
guests on current virtualization solutions. It reviews the advantages and disadvantages of virtualization as a server 
consolidation strategy. It describes the major sources of performance degradation that applications running on guest 
machines face today and discusses the prospects to resolve these problems as new hardware emerges in the near future. 

1.0. Introduction. 
This paper highlights several important capacity planning 
considerations that arise in the virtualization technologies 
that are currently available for the Windows server 
platform. It begins with a discussion of the virtualization 
technology available today. It discusses the appeal of 
virtualization to address the proliferation of under-utilized 
Windows servers, which is widely perceived as a 
significant system management problem. It takes the 
somewhat contrarian view that this problem is not the 
profligate waste of resources that the evangelists for 
virtualization suggest it is, nor is virtualization the most 
direct approach to its solution. After providing a realistic 
assessment of the virtues of current virtualization 
technology, the paper then tries to identify the situations 
where virtualization technology can be employed most 
effectively. 

Capacity planning for virtualization is best described as an 
n:1 folding problem. The capacity planner must assure that 
the guest workloads can fit into the one physical machine 
managed by the virtual machine Host. This is a multi-
dimensional problem where the capacity planner must 
assure that the processor, disk, memory and network 
bandwidth of the combined guest machines – plus some 
allowance for virtual machine “overheads” – does not 
exceed the physical capabilities of the underlying hardware. 
To the detriment of capacity planning, there is limited 
measurement data the Windows Server environment that 
can be used reliably to estimate the amount of virtualization 
overhead to expect in advance for a given workload. 

The discussion of the sources of various virtualization 
“overheads” inevitably leads to a consideration of the 
performance issues that currently arise when Windows runs 
as a guest machine. This article focuses on two significant 
problems that have not been discussed much by other 
commentators. One concern is the technique used to 
schedule virtual machines that has a serious performance 
impact on I/O bound workloads. A second problem area 
involves the measurement perturbations that occur on the 
Windows platform after virtualization technologies are 
introduced. Finally, the paper discusses the hardware 
improvements expected in the near future and their 
potential to resolve these problems in a satisfactory manner. 

2.0. Reigning in the Server Farm. 
 Mainly out of concern for easing the burden of system 
administration, Windows servers tend to be configured to 
run an homogenous workload performing a single task.  
Some of the historical reasons for preferring isolated 
Windows servers running single applications are (1) 
increased stability, (2) better reliability, (3) simpler 
problem-solving, and (4) simpler capacity planning. 

A powerful argument for running homogenous, single 
workload Windows machines was increased stability. 
Indeed, the present author has been one of the forceful 
public advocates for this strategy to deploy Windows 
servers successfully on a large scale. [1] The practices and 
procedures forged in the crucible of experience that led in 
the past to successful deployment of large numbers of 
Windows servers running mission critical applications have 
an understandable resilience in the face of change. At the 
present time, however, it is worth considering whether the 
historical conditions that favored configuring Windows 
machines to run a single, homogenous workload are still 
present today.  

Current industry best practices recommend that the 
Technical Support group responsible for Windows servers 
and desktops adopts a stable image of the operating system 
and application software that it intends to maintain and 
support going forward after a lengthy period of 
concentrated acceptance testing. The image is then cloned 
every time there is an organizational requirement to support 
this application in a new location. The result is a 
proliferation of large numbers of Windows machines that is 
evident to almost every observer of the IT department, most 
of which by almost any common measure of capacity are 
severely underutilized.  

This widespread practice of cloning operating system and 
application software images that are certified by sysadmins 
for stability and reliability does not alone lead to massive 
over-provisioning of Windows servers. The hardware to run 
Windows keeps getting more powerful in leaps and bounds. 
Current generation hardware from Intel and AMD offer 64-
bit addressing, massive amounts of RAM, dual core 
processors, and hyper-threading. These machines offer 
more processing power than many single application 
servers will ever need. This, in turn, leads to opportunities 
to save administrative costs by reducing the total number of 



 

machines that need to be managed. Server consolidation 
makes evident good economic sense, and virtualization is 
one path to server consolidation. 

In the case of a remote field office operation, for example, 
an accomplished system administrator might think it is 
necessary to supply a minimum of three separate OS 
images: one to provide the essential Messaging application 
like MS Exchange or Lotus Notes to tie employees at the 
remote office to the corporate e-mail network; one to 
provide Active Directory-based security and authentication 
services, and a third to supply data protection (i.e., back-up) 
and data recovery. Conventional practice would be to 
supply three separate dedicated machines to perform these 
functions, all of which would likely be severely under-
utilized. Virtualization is an appealing option in this 
instance because it allows all three machine images to be 
run inside a single box.  

We are not ready to concede that this over-provisioning is 
nearly as big a problem as IT professionals reared on the 
frugality required to manage expensive mainframe 
technology cost-effectively presume it to be. In the face of 
the changing economics of Information Technology, it is 
certainly worthwhile to examine the assumptions behind 
this presumption that delivery of service requires separate 
machines. But it is also fair to say that an application of 
rudimentary capacity planning practices and procedures 
could sharply reduce the degree of over-provisioning that 
occurs. 

2.1. Why virtualization. This leads us to the heart of the 
matter. Given this widespread over-provisioning, how has 
virtualization come to be considered the leading solution to 
the problem. This section explores some of the more 
obvious benefits that accrue to server consolidation using 
virtualization. It is a short step from running single 
application servers to recognizing that the servers these 
applications are running on are often massively over-
provisioned. Virtualization promises to enable current 
hardware to be used more efficiently. 1 

Many IT organizations view virtualization technology as a 
viable solution to the evident problem that the organization 
has too many machines to manage. In theory, at least, 
virtualization technology is positioned to address the 
inefficiencies of running machines that are severely over-
provisioned. For the most part, any potential performance 
concerns with virtualization are deemphasized. It is 
assumed that the hardware used to consolidate these 
workloads is so much more powerful than what its OS 
guests demand as to minimize most practical performance 
concerns. But, as will be discussed below in more detail, 
this assumption is naive.  

                                                           
1 Dysfunctional software licensing policies sometimes play a role 
in discouraging consolidating multiple workloads on larger 
machines running a single OS image or multiple databases, for 
example, under a single SQL Server license. 

Virtualization does provide a mechanism that allows system 
administrators to utilize current hardware more effectively 
while retaining all the administrative advantages of 
isolating workloads on dedicated servers. Using 
virtualization, it is, for example, possible to configure and 
run two or more virtual machines – each devoted to running 
a single, isolated workload – on a single hardware platform. 
In the multiple machine scenario described in section 2.0, 
instead of provisioning three separate machines to run the 
mail server application, the domain controller, and the 
back-up server, all three server machines can be 
consolidated on a single hardware platform running 
virtualization software. 

So virtualization allows the system administration to supply 
all three essential services discussed above on a single piece 
of hardware, which is certainly a simplification along that 
important dimension. Moreover, the virtualization solution 
has the additional benefit that it appears not to require 
major changes in current system administration machine 
configuration practice. (The recognition that virtualization 
itself might add significant complexity to the operation is 
something that usually only surfaces later with experience. 
See, for example [3].)  

Curiously, the quaint possibility that multiple workloads 
can be readily consolidated today and delivered by a single 
operating system image does not seem to occur to most 
Windows Technical Support professionals. Yet while many 
of the system management deficiencies of early versions of 
the Windows NT platform have been addressed, the “best 
practices” associated with deploying single application 
servers has barely taken notice. (We will return to this topic 
in section 8 where some of the recent wide-ranging 
Microsoft system management initiatives are discussed.) In 
at least some instances, this is due to an incomplete 
understanding of the basic system management disciplines, 
including performance and capacity planning, and a woeful 
lack of fundamental technical skills, such as the ability to 
craft simple scripts to automate common administrative 
functions.2  

3.0. Virtualization technology today 
Software developers were among the earliest adopters of 
the virtualization technology that is available today for 
Windows. They faced a common problem, namely, the 
need to subject new releases of software to rigorous testing 

                                                           
2 In fairness, it may well be that many quite capable system 
administrators are too busy responding to immediate and pressing 
problems in their massive server farms to ever have the time to 
acquire and hone these basic skills. Moreover, the mobile pension 
and benefits packages that most companies provide to their 
employees today are also a major disincentive for IT departments 
to nurture and train in-house Tech Support professionals for long-
term service to the corporation. In today’s workplace, IT 
knowledge workers are obliged to acquire the repertoire of 
technical skills that ensure they can remain profitably employed 
over the course of a long career themselves. 



 

on a wide variety of platforms. Virtualization software 
allows a single machine to be configured to run multiple 
operating system images that can then be used to ensure 
that the software being developed functions correctly in 
diverse configurations. Software development and Quality 
Assurance testing remains the one area where virtualization 
can be deployed with the greatest unqualified chance of 
success.3 

Virtualization is accomplished as illustrated in Figure 1, by 
installing a virtual machine host on the bare metal that is 
then capable of running numerous virtual machines guest 
operating system images beneath it; in practice, as many 
guest machines as will fit. 
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Figure 1. The architecture of VMware ESX version 2. 

Figure 1 illustrates several key architectural features of the 
most popular virtualization solution for server 
consolidation, which is the VMware ESX Server product. 
(The discussion that follows is based on ESX version 2. 
Details about ESX version 3 were just starting to emerge as 
this paper was being written. Based on the limited 
information currently available, ESX version 3.0 does not 
make any major architectural changes to the software.) 
Note that the VMware ESX software functions as the 
                                                           
3 Interestingly, the two major vendors of virtualization software 
for Windows development and application testing – Microsoft and 
and EMC’s VMware subsidiary – both currently provide full-
featured downloadable versions of their products for free. Free 
versions of both Virtual Server 2005 R2 and VMware GSX are 
currently available. Since the GSX product line no longer 
generates any licensing revenue to VMware, the company is 
forced to rely almost entirely on licensing revenues that the ESX 
product line generates. ESX, of course, is positioned squarely at 
the market for enterprise-class server consolidation solutions, not 
software QA. 

primary operating system (OS) supervisor that interacts 
directly with the physical hardware – the processor, RAM, 
the disks, the network, the video display, etc. Due to its 
status as a base platform that runs the virtual machines, the 
VM Host software layer that you install the virtual machine 
OS on top of is sometimes called the hypervisor [5]. For an 
academic audience, the VM Host software is known as the 
Virtual Machine Monitor [6]. Both are terms for an 
operating system supervisor that is very limited in scope. 

Unlike a more general purpose operating system, the 
functions that the VM Host software performs are narrowly 
delineated to those that are required to define the virtual 
machine guests and sustain them once they are activated. 
Since VM Host software for Windows originated with 
Independent Software Vendors (ISVs) who had no 
preferred access to Windows internals, an additional goal of 
the 3rd party developers who created the VM Host software 
was to run Windows guest machines transparently. 

Note that in the ESX architecture the VM Host software is 
responsible for all native devices attached to the machine. 
The requirement that VMware be able to provide native 
device drivers is a major encumbrance, the burden of which 
VMware attempts to minimize by using a Linux-
compatibility module. This Linux interoperability makes it 
relatively easy to adapt existing Linux device driver 
modules so that they can be re-compiled into the VMware 
Host kernel. (Due to the GNU Open Source licensing 
restrictions, VMware is careful to say that ESX was not 
derived directly from Linux, despite outward evidence of its 
family resemblance.) In practice, ESX supports a wide 
variety of disk, network, and SAN-attached devices (see 
http://www.vmware.com/pdf/esx_io_guide.pdf for 
reference), similar to the range of devices that can be 
attached to most Linux servers. 

Relying on the VM Host software to provide native device 
drivers to support all attached physical devices is not the 
only way to achieve virtualization’s goals. The VMware 
GSX and Workstation products, as well as the Microsoft 
Virtual Server 2005 product based on the software 
Microsoft originally acquired from Connectix in 2003, 
provide virtualization software that is installed on top of a 
standard Windows OS installation. This approach allows 
you to install and run native Windows device drivers, which 
are more widely available for some peripherals than Linux 
drivers. Native Windows device drivers typically exploit 
Windows Plug-and-Play technology during installation and 
set-up. They frequently also have more elaborate feature 
sets and user interfaces than their Linux counterparts. The 
ESX dedicated Virtual Machine Monitor approach permits 
a greater degree of vm guest isolation, such that a problem 
with a device driver on one virtual machine guest is less 
likely to impact other vm guests that offer shared access to 
the same device. The ESX Host software also supplies a 
dedicated Scheduler service, as illustrated, to dispatch VM 
guests, rather than rely on the standard Windows priority-
based thread Scheduler which was never designed with 
virtualization in mind. 



 

A third design alternative is the approach used in the Xen 
project where the VM Host software virtualizes its devices, 
which allows it to rely on native devices drivers installed on 
the guest OSes to communicate directly to attached 
peripherals. While Xen’s approach allowing for native 
guest OS device drivers has many commendable virtues 
(see [7] for details), Xen is not transparent to the guest OS. 
In fact, in Xen the guest OS must be modified to run under 
Xen. Relaxing the transparency requirement means in 
practice that Xen cannot currently host Windows guest 
machines today, so any further discussion of its creative 
approach to virtualization is beyond the scope of the present 
essay. 

When you set up a Windows server guest machine to run 
under either VMware ESX or MS Virtual Server 2005, the 
guest OS sees only the virtual disk, network, and video 
devices exposed by the VM Host software. The VM Host 
software exposes a limited set of generic devices that the 
guest OS detects, configures, and uses. In the case of ESX, 
it also limits the number of logical processors that the guest 
OS is able to detect. (This was recently raised to a 
maximum of four CPUs per guest machine in ESX version 
3.)   

Both the VMware Host and Virtual Server 2005 also inject 
one or more service processes into the guest Windows 
machine. These are used to facilitate communication 
between the Host and the Guest. In the case of ESX, the 
Windows guest OS runs VMWareService, plus the 
VMWareTray and VMWareUser processes. 
Communication between the VM Host and the Windows 
Guest OS occurs across a virtual NIC that simulates a 
generic AMD PCNET Family Ethernet adapter. (Host-guest 
machine communication in Virtual Server 2005 is similar.) 
From a performance monitoring perspective, when ever you 
can detect that the VMWareService process is active, then 
you can accurately deduce that the machine in question is a 
virtual machine guest. 

4.0. Sizing virtualization environments 
today 
So long as the virtualization technology being deployed was 
confined primarily to assisting with software development 
and testing, the technology raised few pressing capacity 
planning or performance concerns. (Running the sort of 
application stress-testing workload where performance 
actually mattered could always be diverted to a dedicated 
machine. See [4]). It was only when this same virtualization 
technology was re-positioned as a way to achieve server 
consolidation that serious capacity planning and 
performance considerations began to surface. 

In principle, capacity planning to size the machine hosting 
two or more virtual machines should be quite simple. It 
corresponds to the problem of folding n virtual machines 
into one container, the machine that hosts the VM Monitor. 
It does require an optimal solution over time that factors in 
whether individual workload peaks overlap or not. (If you 
can consolidate non-overlapping workloads, you can 

achieve significantly more efficient operations.) Some care 
must be taken to ensure that the solution is optimal across 
multiple dimensions where each dimension corresponds to 
utilization of some physical resource that the host machine 
must apportion among the guest machines – the processor, 
RAM, the disks, and the network interfaces. To the degree 
that generously-sized current hardware capabilities often 
lead to machines that appear to be massively over-
provisioned, sizing the host machine ought, in principle, to 
be relatively easy. 

4.1. Sizing the processor. The processor, for example 
should be large enough to handle the sum of the processor 
demand from each configured virtual machine, plus some 
additional headroom to accommodate some amount of the 
inevitable virtual machine management “overhead” (to be 
dissected in somewhat more detail below): 

Physical CPU Capacity > VMM management overhead + 

∑(VM-Guestn CPU + Overheadn) 

In the case of sizing the processor, at least three major 
sources of VM overhead can be identified. In [8], Gunther 
identifies the VMM Scheduler that is responsible for either 
round-robin or weighted dispatching of virtual machine 
guests as one source of overhead. Gunther relies on a 
VMware-published ESX benchmark [9] that shows that this 
management overhead is minimal and well-behaved. It 
appears to scale linearly with the number of VM guests that 
are defined. The ESX benchmark data from [9] is 
summarized in Figure 2 for a four-way machine.  

The benchmark workload in [9] is severely CPU-
constrained. It is also designed to minimize the other two 
major sources of VMware management overhead. Notice 
that overall throughput tails off slightly as more virtual 
machines are configured to run than there are physical 
processors available to run them. Therefore, the difference 
between the dotted horizontal line at the top of the chart 
identified as “theoretical” and the actual Completion rate 
represents the processor scheduling overhead. The 
scheduling overhead per guest machine can be calculated 
as: 

(Theoretical – Actual throughput) * 100 / Theoretical 
throughput / # of VMs 

ESX scalability on a CPU-bound workload

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18

# of Virtual Machines

Th
ru

pu
t

0

1000

2000

3000

4000

5000

6000

Se
co

nd
s

Completion Rate
No Management Overhead (theoretical)
Actual Completion Rate

 



 

Figure 2. ESX scalability on a CPU-bound workload. 
Taken from benchmark results published by the 
VMware Corporation. [8] 

In [10], Menascé identifies a second source of virtualization 
processor “overhead,” which arises because the guest OS 
executes in User mode (Ring 3 on an Intel processors). 
Under VMware, every time an OS function inside the guest 
machine attempts to issue a privileged instruction, a 
hardware exception is raised. The VM Host interrupt 
handler has to trap this exception and recover from it. It 
does this by emulating the privileged instruction issued by 
the guest OS that failed. In practice, the emulation routine 
can be quite involved, depending on the function that 
VMware must mimic. 

To illustrate this process, let’s look, for example, at what 
happens when the guest OS needs to perform an I/O 
operation to disk. In the course of generating an I/O request, 
the Windows kernel-mode I/O Manager and the physical 
disk device’s associated driver code normally operate 
exclusively in Privileged mode, or Ring 0. In the 
virtualization environment, all of this code is executed in 
User mode, or Ring 3. Whenever any kernel mode 
instruction that is only valid in Privileged mode is issued in 
User mode, the instruction fails. At this point, the VM Host 
software intervenes. After trapping the invalid instruction 
interrupt that occurs, the VM Monitor runs an emulation 
routine that mimics the original intent of the guest OS, and 
then returns control to the guest machine. Menascé 
characterizes this overhead in modeling terms as an 
execution delay, which it certainly is. In the virtualization 
environment, each attempt to execute a privileged 
instruction by the guest OS is replaced by an interrupt, the 
execution of the VM Host interrupt handler, and, finally, 
the execution of the emulation routine. The instruction path 
length associated with the function increases enormously. 
Unfortunately, the full extent of the associated delay is 
impossible to characterize accurately without measurements 
taken by the VM Host on the number of privileged 
instructions emulated, which are currently not forthcoming.  

One idea is that the delay associated with emulating 
instructions that require privileged mode is proportional to 
the amount of time the guest OS spends in kernel-mode (% 
Privileged Time). This is a helpful suggestion, but hardly a 
precise way to proceed. Very few of the instructions 
executing in kernel-mode are privileged instructions, but, 
this depends on the OS function being executed.4 Device-

                                                           
4 The implications of this last statement on secure, protected mode 
operations are wide-ranging [16]. Windows relies upon the 
privilege level to isolate processes from each other and from the 
protected mode operating system supervisor. For example, 
memory protection is used to ensure that a User process cannot 
access a memory location in the system range. On Intel hardware, 
even though there are four instruction execution privilege levels – 
or Rings – there is only a single bit privilege-level associated with 
a page table entry. (On recent Intel processors, the four privilege 
Rings have been collapsed into the two that Windows actually 
uses.) The normal protection memory mechanism used in 

driver functions that issue instructions that reference 
physical addresses (not virtual ones) require Privileged 
mode to succeed. Major OS functions related to I/O 
processing in general, including the Cache Manager, the 
Workstation and Server services, processing within the 
TCP/IP stack, and the new kernel-mode http.sys driver in 
IIS 6.0, all make extensive use of physical addressing 
mode. The performance of all of these functions suffers in 
the virtualization environment, in some cases prohibitively 
so.5  

A third source of virtual machine management overhead is 
a doubling of the number of instructions to initiate I/O 
operations and to service I/O completion interrupts. When a 
hardware-related device interrupt occurs, the native device 
driver code running in the VM Host software layer is driven 
initially. Once the native device driver services the 
interrupt, the VM Host software must determine which 
guest OS initiated the request and how to map the physical 
request into the appropriate virtualized context. Once this is 
accomplished, the VM Host software queues a virtual 
interrupt for the guest OS, which must then await 
dispatching by the VM Host guest machine Scheduler 
before the guest machine can detect that a device interrupt 
has occurred and process it. (This leads to delays in I/O 
interrupt servicing that are discussed in section 4.3.) When 
the device interrupt is received by the guest OS, its version 
of the interrupt handler is then dispatched to deal with it. 
Clearly, two similar sets of code are traversed, where only 
one set would be executed in a native run-time 
environment. 

For Windows guest machines running under VMware, the 
sum of the amount of % Interrupt Time and % DPC Time 
recorded at the Processor level when the system was 

                                                                                                  

Windows relies on the hardware to trap an instruction issued in 
User mode that references a memory location in the system 
address range. But in the virtualization environment, all kernel 
mode functions run in User mode. Unfortunately, VMware 
documentation is silent on the precise mechanisms used to 
maintain the security of the protected-mode Windows kernel by 
preventing User-mode instructions from accessing system 
addresses. Performance implications would likely preclude having 
every guest OS kernel-mode instruction fail whenever it attempted 
to access an address in the system range, so it is probably safe to 
assume that all memory locations associated with the guest OS are 
marked in the actual PTEs maintained by the VMware Host 
software as non-supervisor state allocations.  

5 Menascé [8] suggests that the cycles lost to privileged 
instruction emulation are at least partially offset by running the 
virtual machine on a correspondingly faster processor. While this 
is a worthy suggestion, it is not the end of the story. If you are 
consolidating workloads running on previous generation hardware 
onto new machines where a virtualization engine is installed, the 
newer machines are likely to have a clock rate that is twice as fast. 
However, the virtualization cost of emulating guest OS privileged 
instructions is on the order of hundreds, if not thousands, of 
additional instructions to be executed, compared to one.  

 



 

running in native mode provides a good estimate of the 
amount of additional CPU time that the VM Host software 
will require to process device interrupts on behalf of the 
guest machine.  

4.2. Sizing RAM. In the case of sizing RAM, the memory 
requirements of a Windows guest can usually be reliably 
estimated by subtracting the Memory/Available Bytes 
counter from the size of RAM when the machine runs 
natively. VMware advises allowing for an additional 32 
MB of RAM per virtual machine, plus the VM Host 
software itself, which requires about 400 MB of RAM. 
VMware must also provide a shadow copy of every page 
table entry (PTE) that is present on each guest OS (note that 
page tables are built per process). The VM Host software 
must intervene on every context switch to override the 
attempt by the guest OS to establish a new virtual 
addressing context.  

VMware exploits the shadow PTE mechanism to wring 
some counter-balancing efficiencies from the virtual 
memory management process. Guest machines that have 
memory resident pages that are identical are able to share a 
single, memory-resident copy of the page. This effort is 
more noteworthy for the effort involved in identifying 
pages that are eligible to be shared, than the result, which is 
limited when very heterogeneous servers are consolidated. 
In the case of homogenous workloads, Waldpurger in [17] 
reports an impressive level of savings, nearly 40% in the 
case where 10 guest machines all running Windows NT 4.0 
were defined. Nevertheless, consolidating the workloads 
under a single OS image where possible remains the 
superior approach. In Virtual Server 2005, a full 
complement of RAM on the host machine must be provided 
to the guest OS or else the guest machine simply will not 
boot. 

The VMM maintains a single set of page tables that the 
virtual address translation mechanism in the hardware 
recognizes, which essentially duplicates the virtual address 
mapping information that each guest OS must itself 
maintain in virtual memory. It should go without saying 
that you would not want to configure a memory-constrained 
guest OS that had high paging rates. VMware uses a 
technique called ballooning [17] where it injects a device 
driver into a guest OS that ties up large amounts of physical 
memory in order to force the guest OS to trim unused 
virtual memory. Ballooning thus allows VMware to defer 
making page replacement decisions to the guest OS, which 
is in a far better position to make them intelligently. The 
ability of Windows Server 2003 to communicate directly 
with server applications that perform their own memory 
management (predominantly in support of I/O buffering) 
[13] suggests ballooning could be quite effective in this 
environment. The VMware Host software can determine 
which memory locations the OS has freed up by examining 
the guest OS page tables. Then VMware can re-distribute 
these available pages to other guest machines. 

4.3. I/O interrupt delays. While not necessarily a capacity 
issue per see, the foregoing catalog of the performance 

issues impacting the scalability of virtualization technology 
would not be complete without some mention of significant 
interrupt processing delays that can easily arise. Significant 
interrupt delays are likely whenever there are more virtual 
machines defined than there are physical processors to run 
them. The problem can grow acute when some of the 
virtual machine workloads are I/O bound. 

In a virtualization environment, servicing a high priority 
device interrupt becomes a two stage process. The VM Host 
driver software services the native device interrupt on 
demand as a necessarily high priority operation that 
preempts any lower priority task that is currently 
dispatched. One effect of this is that a guest machine that is 
currently dispatched can be interrupted by an I/O 
completion that was initiated by a different virtual machine. 
After the VM Host software services the interrupt, it queues 
a virtual interrupt to be processed by the initiating virtual 
machine. The virtual machine waiting on the interrupt may 
also be waiting to be dispatched on the VM Host queue. 
The guest machine cannot service the interrupt until the 
next VMware Host Scheduler interval in which it is 
scheduled to run. Any dispatchability delays effectively 
increase the time it takes the virtual machine to process 
device interrupts. This interrupt processing delay can be 
considerable. 

Past experience with virtualization technology in the 
mainframe world (see, for example [11]) shows that I/O 
bound virtual machine workloads are prone to a secondary 
effect if they suffer extended periods when they are 
ineligible to be dispatched to service the interrupts they are 
waiting for. I/O interrupts that are queued to be serviced 
can only be processed when the virtual machine is finally 
dispatched. The effect is to stagger interrupt processing at 
the guest machine in a manner that leads to a skewed arrival 
rate distribution, a worst case that maximizes the queuing 
delays that are experienced. Ultimately, this secondary 
effect proved so powerful that the dispatcher mechanisms in 
mainframe partitioning schemes had to be modified to 
counteract it. The same behavior is currently evident in the 
virtualization solutions available for the Windows platform. 

The performance of virtual machines during I/O intensive 
operations like back-up illustrates the problem. Suppose the 
virtual machine running the back-up task is one of two 
virtual machines vying for a processor. When the vm is able 
to execute, it usually has a backlog of I/O interrupts to 
service. After the interrupts are serviced and the next I/Os 
in the sequence are initiated, there may be little or no other 
processor-oriented work that needs to be done. So the 
virtual machine idles its way through the remainder of the 
time slice that it is eligible to run. When its time slice 
expires, the virtual machine waits. Meanwhile, some of the 
I/Os that were initiated during its last cycle of activity 
complete. But they cannot be serviced because the vm is 
not eligible to be dispatched. At the next interval where the 
vm is dispatched, the cycle repeats itself. Compared to 
running native, the I/O throughput of the virtual machine is 
slashed by 50% or more. 



 

Currently, the only way to minimize the impact of this 
scheduling delay is to configure an I/O bound workload so 
it has access to at least one dedicated physical processor. 

5.0. Performance expectations.  

The previous section discusses some of the important 
architectural features of the virtualization software available 
for the Windows platform that have a major performance 
impact. Focused primarily on the popular VMware ESX 
package, it identified virtualization overheads that need to 
be factored into an initial server sizing effort. In this section 
we discuss the performance impact of the architectural 
features that were described in section 4. It is important to 
have some reasonable expectations about the performance 
of your applications once you start running them under 
virtualization. 

In the area of processor utilization, three main issues were 
raised in section 4 that impact capacity. This section 
focuses on their performance impact. 

• Virtual machine guests are subject to either round-
robin or time-weighted dispatching by the VM 
Host software on the physical processors assigned 
for their use. (In VMware ESX version 3, a guest 
machine can be assigned to use from 1-4 physical 
processors.) The VMware Scheduler overhead 
used to switch the processor between virtual 
machines is minimal, but scales linearly with the 
number of virtual machines that are defined.  

For any given processor workload, instruction execution 
throughput is degraded in proportion to its scheduling 
weight and the contention for the physical processors from 
virtual machines. VMware claims that ESX can detect 
when a virtual machine is idle, and will dispatch a different 
eligible virtual machine when it does so. This is critical to 
the performance of Windows guests because Windows does 
not issue a processor HLT instruction when it has no work 
to do [13].6 Using a periodic timer check, the interval of 
which is currently set to 1.5 milliseconds by default, the 
ESX Host Scheduler would have an opportunity to preempt 
an idle virtual machine, assuming it can detect the system 
state reliably.  

Using a series of benchmarks, Shelden tried to characterize 
ESX processor dispatcher queuing delay in [14], which he 
discovered could be substantial. He found, for example, that 
when a virtual machine was eligible for multiple 
processors, VMware dispatched the guest OS on both 
processors (ESX version 2) simultaneously. This technique, 

                                                           
6 It is not clear how this Idle Loop detection algorithm works or 
how effective it is in ensuring that idle Windows guests do not 
waste processor cycles. As reported in [13], the Windows Idle 
loop is a succession of no-op instructions issued from the HAL. 
On machines that support APCI power management, the HAL 
transfers control from the Idle loop to the processr.sys driver 
module to take appropriate action, which may include slowing 
down or powering off the processor. 

which VMware calls co-scheduling, provides a consistent 
multiprocessor environment for the guest OS, but it also 
means potentially significant dispatching delays when there 
is contention among virtual machines for the processor. 

Shelden’s results suggest that co-scheduling virtual 
machines causes significant performance degradation when 
there is CPU contention among the OS guests. Performance 
analysts need to be on the lookout for runaway application 
threads that are looping, something that sites can blithely 
ignore in many dedicated server application environments. 
A guest machine running a thread stuck in a loop has the 
potential to create significant contention for any processors 
it shares with other guest machines. 

• The guest OS is run in User mode. All attempts by 
the guest OS code to issue privileged instructions 
are trapped by the VM Host software and 
emulated. The additional interrupts that are 
generated (due to the failed instructions) and the 
emulation code that substitutes for the original 
instruction add significant path length to routine 
attempts by the guest OS to execute privileged 
instructions. 

Server applications that rely on physical addresses are 
likely to be the most vulnerable to this delay. The general 
mechanism used in Windows to make physical addresses 
available to device driver and other system modules is for 
them to allocate memory in the system’s Nonpaged Pool. 
This should make it relatively easy to identify applications 
that are subject to this delay. Any Windows server 
application that makes extensive use of physical addresses 
are potentially vulnerable. 

When issued by a virtual machine guest running in User 
mode, the privileged instruction to disable paging in order 
to utilize physical addresses or to re-enable paging when it 
is safe to do so fails. The failed instruction must then be 
emulated by the VM Host software. Extensive VMware 
Host intervention is required to perform these functions, 
which are associated with high performance DMA device 
controllers. Windows has a number of subsystems that 
remain in kernel-mode so that they can work directly with 
DMA controllers and utilize physical addresses. These 
include the MDL Cache interface (MDL stands for Memory 
Descriptor List) used by the file Server service and IIS. 
High performance Fibre Channel and SCSI device drivers 
also make extensive use of physical addressing and MDLs. 

For example, the http.sys driver module introduced in IIS 
6.0 can process Get Requests for static html objects entirely 
in kernel-mode. In IIS 6.0, TCP/IP, also running in kernel 
mode, queues an HTTP Get Request object to an http.sys 
worker thread. The worker thread has access to a physical-
memory resident look-aside buffer (known as the Web 
Service Cache) where fully rendered HTTP Response 
objects are cached. If a cache hit occurs, the HTTP 
Response object can then be transferred from the cache to a 
physical memory-resident MDL output buffer for 
transmission by the NIC back to the requestors IP address 



 

without leaving kernel mode. For the sake of efficiency, 
this process relies on instructions that are accessing 
physical memory addresses directly.7  

• The guest OS code to initiate and service I/Os is 
executed twice, once by the guest OS and a second 
time by the native device drivers running on the 
VM Host. This slows down the execution of both 
disk and network operations. 

This strongly suggests that I/O bound workloads with 
critical performance requirements – and that includes 
network I/O of all types – should be run in native mode, not 
as virtual machine guests. Workloads that are not primarily 
I/O bound may still have periods where I/O performance is 
critical. It may be necessary, for example, to migrate guest 
machine back-up operations to a VM Host native back-up 
operation if back-ups cannot complete in the window that is 
available. The performance trade-off here is that VM Host 
native back-up operations view the guest machine’s disk 
storage as a container file that must be backed up or 
restored in its entirety. Application-level file back-ups, like 
those performed on SQL Server or Exchange databases, 
must be run on the platform that runs the application. Of 
course, this type of application server may fall into the 
category of I/O bound workloads that need to run natively 
anyway. 

The likely bigger concern for I/O bound workloads is where 
there is processor contention among virtual machine guests 
and I/Os to the guest OS remain pending during relatively 
long periods when the virtual machine is not eligible to be 
dispatched, as discussed in section 4.3. 

• The balloon technique which forces page 
replacement back to the OS in various guest 
machines, along with the ability to share common 
pages among homogenous guests, makes memory 
management relatively efficient in the 
virtualization environment. Whatever additional 
memory that is required in the VM Host software 
and on VM guests to make virtualization work can 
be offset by this bag of clever memory 
management tricks. 

• The simple virtual machine processor dispatching 
method used in VMware, along with the co-
scheduling of processors to virtual machines 
defined to run on multiprocessors, leads to long 
delays in I/O interrupts processed by the guest OS. 
This, in turn, can lead to an artificial staggering in 
the rate of I/O initiation and completion. This 
secondary effect of the virualization engine’s 
Scheduler can have a large negative impact on 
even modestly I/O bound workloads. 

The cumulative effect of these negative performance 
impacts can be substantial. Shelden’s benchmark testing 
                                                           
7 The popular Apache web server application that runs primarily 
on Linux has comparable facilities. 

[14], which was designed to isolate the performance impact 
of the VMware ESX processor scheduler showed 
significant degradation due to co-scheduling. In a test case 
where two virtual machines were active, each with two 
active threads, each capable of consuming approximately 
55% of a processor in a conventional environment, overall 
utilization of each physical processor in the 2-way VM 
Host machine managed to reach only about 65% busy, 
instead of an expected 100% busy. One explanation is that 
the VM Host software was unable to detect correctly when 
a Windows processor is idling. Another possibility that 
Shelden explores is that processor co-scheduling requires 
that physical processors be assigned to virtual machines in 
tandem. When Shelden changed his simulation to use a 
Dispatch in Pairs scheduling algorithm, instead of the 
expected Dispatch When Ready, his simulation results were 
a significantly better fit to the actual data. 

In [8], the principal researchers behind the development of 
Xen compare and contrast the performance of native Linux, 
Xen, and VMware Workstation on a series of benchmarks. 
Figure 3 below summarizes three of the comparisons: a 
CPU stress test running specint; a database-oriented 
benchmark; and the SpecWeb99 test suite that is a very 
comprehensive test of web server capabilities (it stresses the 
CPU, the network and the disks). On the CPU-bound 
workload, VMware results keep pace. But on the database 
and web server workloads, VMware lags native 
performance considerably. On the web server tests, the Xen 
developers observed, “VMware suffers badly due to the 
increased proportion of time spent emulating ring 0 code 
while executing the guest OS kernel.”8  
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Figure 3. Benchmark results comparing native Linux, 
Xen, and VMware on three different workloads. From a 
                                                           
8 The Xen developers were prohibited from reporting comparable 
results with the ESX Server software due to the vendor’s licensing 
restrictions. Perhaps we can assume that ESX performed better, 
but not so much better that VMware was willing to grant 
permission to publish the ESX test results. To date, VMware has 
only made public benchmark results for ESX running a CPU-
bound workload similar to the one showed in Figure 3. 



 

paper written by the principal developers of Xen at 
Cambridge University. [7] 

The benchmark results presented by VMware in [8] on a 
CPU-bound workload are consistent with the specint 
workload shown in Figure 3. It tells only part of the story. 
The memory-resident, compute-bound workload discussed 
in [8] ignores significant sources of delay that typically 
accompany virtualization for Windows guest machines. 
Performance of workloads where there is a significant 
amount of thread and process context switching, interrupt 
handling, and I/O in general suffer from significant 
performance degradation. Section 9 will look briefly at the 
coming generation of processor hardware that has built-in 
virtualization capabilities. These are designed to 
significantly reduce these sources of performance 
degradation that are evident today. Until that hardware is 
available and a new generation of virtualization software is 
developed to exploit it, you need to have realistic 
expectations for the performance of virtualization solutions 
for Windows. 

7.0. Monitoring the virtualization 
environment. 
Performance monitoring for virtual machines running under 
VMware ESX is complicated today because many of the 
familiar guest OS measurements become difficult to 
interpret and cannot be relied upon. It is necessary to 
augment guest OS monitoring procedures with 
measurements from the VM Host software, especially 
regarding the use of the processor by various guest 
machines. Fortunately, VMware ESX does provide some 
necessary processor utilization statistics, but it lacks 
measurements that can give you a clear picture of what is 
going wrong when performance issues surface. 

One side-effect of the two-step process in which device 
interrupts are handled by the VM Host software is that the 
timing mechanisms on a Windows guest machine are not 
reliable. This affects all timer-based measurements that any 
performance monitoring software running inside the 
Windows guest makes, including the % Processor Time 
utilization measurements at the Thread, Process, and 
Processor level and the Avg. Disk Secs/Transfer response 
time measurements for both Logical and Physical Disk. 

The Processor utilization measurements in Windows are 
derived from samples taken once every clock interval. (See 
[13] for details.) The precision of the system clock is 
maintained as if ticks occur every 100 nanoseconds. In 
reality, the system clock time is updated much more slowly, 
normally about once every 5-10 milliseconds, depending on 
the machine. In official Microsoft documentation, this 
duration between clock ticks is sometimes referred to as the 
periodic interval. The mechanism used to maintain the 
system time is a timer interrupt that is set to fire regularly 

every periodic interval.9 When the timer interrupt occurs, 
the Windows OS advances the system clock. It also samples 
the state of the machine at the time of the interrupt and 
determines what thread from what process was running 
when the clock interrupt occurred. All of the processor 
utilization measurements at the thread, process, and 
processor level are based on this sampling technique. 

The high priority clock interrupt that Windows relies upon 
to keep time internally and for all its measurements of 
processor utilization is subject to interrupt pending delays 
in a virtualization environment. The periodic interval that 
Windows relies upon to keep accurate time is subject to 
erratic behavior, as documented in [15]. Consequently, the 
processor utilization samples that Windows gathers are no 
longer uniformly distributed in time. This should not 
invalidate the measurements completely, especially when 
you are looking at long enough intervals with sufficient 
samples to minimize normal sampling error. However, 
Windows performance monitoring software does not have 
direct access to the number of processor utilization samples. 
The utilization metrics the software calculates are based on 
the assumption that the intervals between samples are 
uniform. Obviously, this is not correct in the virtualization 
environment. The resulting calculation of % Processor 
Time is subject to major error because VMware does not 
deliver virtual clock interrupts at uniform time intervals. 

A number of knowledgeable observers have puzzled over 
the interpretation of the processor utilization measurements 
that rely on this timing mechanism when they are taken in a 
virtualization environment. They have had little success 
trying to make sense of the normally reliable processor 
utilization measurements provided by the Windows guest 
machine and and even less correlating them with 
measurements taken by the ESX host software. See for 
example, [3] and [14]. The problem is that it is difficult to 
know what to make of any of the Windows % Processor 
Time measurements (all counters of type 
PERF_100NSEC_TIMER are impacted) as calculated by 
the Windows guest OS. The way interrupts in general, the 
clock interrupt included, are stacked up waiting for service 
when the virtual machine is finally dispatched undermines 
the uniform sampling methodology that Windows relies on 
in its % Processor Time calculations.  

                                                           
9 The timer is a peripheral device on the Intel platform – it 
normally resides on one of the supporting chip sets external to the 
processor. Because the clock timer is a peripheral, it requires an 
I/O operation to access the current clock value. Intel processors 
beginning with the Pentium do contain a Timestamp Counter 
(TSC) that reflects the internal frequency of the microprocessor 
and the TSC can be used very efficiently to time the duration of 
any event. VMware ESX, in fact, uses the TSC for its 
measurements of processor utilization. But the TSC can only be 
used to tell time, it cannot be used to generate an interrupt at some 
future point in time. On Intel microprocessors with power-saving 
features, the TSC does not maintain a constant uniform clock rate, 
which is a function performed instead by the ACPI Timer. 



 

Direct measurements taken by VMware ESX are necessary 
to augment the guest OS measurements. (Generous portions 
of ESX version 3 and its Infrastructure add-ons appear to be 
devoted to performance monitoring.) ESX version 2 
currently provides an interface to allow programs running 
on the VM guest to pull performance metrics, including the 
Total CPU Seconds used by the VM (in milliseconds). At 
least one third party performance monitoring product 
currently supplies measurements of VM Guest CPU % 
Used and % Ready (purportedly, the percentage of time a 
guest OS was Ready to run on the VM Host, but was unable 
to). Consolidating this information with data from various 
guest machines is always a challenge, of course. 

Even though Windows presents system timer values in ticks 
of a 100 nanosecond clock, the system time value is 
actually only adjusted every periodic interval. The actual 
granularity of clock intervals is in the range of 5-10 
milliseconds, as discussed above. This granularity proved 
too coarse for many performance-oriented measurements. 
So, beginning in Windows 2000, a new timer facility based 
on the TSC was introduced. This newer timing facility, also 
known as a high precision clock, is accessed using the 
QueryPerformanceCounter Win32 API call, somewhat 
inappropriately named because it is a general purpose 
interface that issues the RDTSC instruction.  

In VMware, the TSC is virtualized and the RDTSC 
instruction, which can only be issued in privileged mode, is 
emulated. [15]. In [15], VMware warns, 

Reading the TSC takes a single 
instruction (rdtsc) and is fast on real 
hardware, but in a virtual machine this 
instruction incurs substantial 
virtualization overhead. Thus, software 
that reads the TSC very frequently may 
run more slowly in a virtual machine. 
Also, some software uses the TSC to 
measure performance, and such 
measurements are less accurate using 
apparent time than using real time. In a 
virtualization environment, there is no 
guarantee that the I/O interrupt from the 
clock will be issued or serviced by the 
guest OS in a timely manner.  

The Windows performance measurements that are impacted 
by this anomaly are the Logical and Physical Disk % Idle 
Time counters that measure disk utilization, one of several 
disk performance counters of type 
PERF_PRECISION_100NS_TIMER. The accuracy of the 
Avg. Disk secs/Transfer counter that furnishes disk 
response time measurements is also suspect in a VMware 
environment. Both the Logical and Physical Disk 
measurement layers in the I/O Manager stack issue a call to 
QueryPerformanceCounter at the start and end of every I/O 
operation. Unfortunately, native ESX only measures disk 
and network throughput per virtual guest, which does not 
close the gap that not having these important guest OS disk 
performance statistics leaves. 

8.0. Alternatives to virtualization. 
Given these drawbacks in current virtualization technology, 
it is reasonable to ask why more IT departments do not 
embrace consolidating single application server workloads 
under a single OS image. If the problem is indeed too many 
OS machines (and machine images) to manage, why not 
consider consolidating multiple workloads under a single, 
native OS image. All in all, we see little reason today to 
prefer server consolidation using virtualization, which does 
not actually reduce the number of machine images that need 
to be managed, to workload consolidation under a single 
OS image, which does. 

One reason for not consolidating workloads on a single 
image of the Windows OS is that the practice cuts across 
the grain of the institutionalized procedures that have grown 
up for testing deploying stable OS images, as discussed at 
the outset. For capacity planning, performance, and tuning 
issues, running isolated Windows machines running single 
applications was preferred in the past. The present author 
made a strong case for this administrative practice in [1] as 
far back as 1996 and more recently in [2]. The case for 
deploying single server application machines is 
substantially weaker today due to (1) major improvements 
in Windows Server and server application reliability, (2) 
increased flexibility to configure and manage 
heterogeneous workloads in IIS and SQL Server, (3) the 
capability to manage the performance of heterogeneous 
workloads using WSRM, and (4) the relief from virtual 
memory constraints that the 64-bit version of the OS grants. 
Let’s consider each of these areas of improvement in more 
detail below. 

For the Microsoft Windows server platform, there are two 
web-based services designed to improve reliability that are 
very visible. These are (1) the Automated Update feature 
that automatically delivers maintenance to the OS and its 
server applications, and (2) the facility to gather 
information about application program failures 
automatically and send data on these failures to Microsoft 
for analysis. The failure analysis program allows Microsoft 
to gather information on what problems are occurring and 
allocate resources appropriately to fix the more common 
and serious ones. As fixes to the software are developed, 
the Automatic Update service can deliver them to the 
machines that are experiencing the problems. 

Another set of reliability improvements that is not as visible 
to system administrators, but is no less important to the 
cause of system stability is a series of  initiatives to improve 
device driver reliability. Bugs in device driver code have 
historically been one of the most common causes of serious 
reliability problems. Microsoft has several programs to 
improve the quality of device driver code. It has made 
significant enhancements to the OS so that it can detect 
malfunctioning device drivers and recover better from these 
malfunctions. The result of all these initiatives is to improve 
the quality of the OS and driver code, which leads to 
significantly better reliability. 



 

With the Web Gardens architecture developed for IIS 
version 6 and the multiple instance feature of SQL Server 
2000, it is now possible to configure and manage multiple 
web sites and application databases under a single OS 
image. Using the Web Gardens feature of IIS 6.0, you can 
define multiple Application Pools. Then you can assign 
specific web sites to a specific Application Pool. Each 
Application Pool consists of one or more worker processes 
that run in isolation from each other. The health and 
performance of each Application Pool can be managed 
separately as well. With both SQL Server 2000 and 2005, it 
is possible to execute multiple instances of the sqlservr.exe 
process. Each copy of SQL Server can be managed 
separately, using processor affinity and memory working 
set settings to keep them from contending with each other 
for these system resources. The multiple address spaces 
available to web server applications and the DBMS also 
assist in scalability of these server applications on virtual 
memory-constrained 32-bit machines. [13] 

Initial versions of the Windows server platform lacked any 
sort of built-in, system-wide tuning apparatus designed to 
help system administrators automatically balance resource 
usage among competing workloads according to some 
established set of management goals or priorities. A 
performance management framework that is capable of 
adjusting the priorities of various workloads automatically 
during times of stress makes it easier to configure and 
manage environments where heterogeneous workloads 
must co-exist on the same machine. In such an 
environment, whenever key shared computer resources 
such as the processor, memory, the disks, or the network 
become over-committed, the performance management 
framework can detect these conditions and intervene 
automatically, favoring higher priority workloads at the 
expense of lower priority ones. 

As discussed long ago in [2], what performance 
management tuning knobs, options, and controls that did 
exist in Windows were initially available mainly at the 
application level. Moreover, the default values for the 
configuration parameters available for server applications 
like SQL Server, Exchange, the built-in Internet 
Information Server usually assumed that the application 
was being run on a dedicated server. Over-provisioning 
these machines to run a single workload or service is one 
handy way to deal with otherwise thorny capacity planning 
and performance and tuning issues because it ensures they 
surface only rarely. 

In Windows Server 2003, Microsoft introduced the 
Windows Server Resource Manager (WSRM) utility that 
does provide system-wide, policy-based performance 
management capabilities. Using WSRM, the system 
administration can define workload categories. Based on 
the current resource utilization of the defined workloads, 
WSRM can dynamically adjust their dispatching priority 
when there is contention. WSRM controls can also be used 
to manage physical memory allocations and processor 
affinity settings. WSRM controls do not supersede the 

application-level settings that can be used to control SQL 
Server or IIS. But they do make it possible to manage any 
other servers applications you need to run from a system-
wide perspective. 

Finally, it is important to remark on the relief from 32-bit 
virtual memory constraints that the availability of 64-bit 
machines and a 64-bit OS provides. Even 32-bit 
applications gain some relief from virtual memory 
constraints in 64-bit Windows – they can expand to use a 
full 4 GB User private area. Native 64-bit applications like 
SQL Server 2005 currently have a huge 16 TB virtual 
addressing range available to them. Running the 64-bit OS 
is another way to consolidate workloads from multiple 
servers and run them effectively. 

The same system administration practices and procedures 
that are adequate for running isolated, single application 
servers fall short of what is required for multiple workloads 
consolidated under a single OS image. In particular, both 
proactive performance management of the sort discussed in 
[13] and capacity planning and prediction are necessary to 
ensure that such machines run smoothly. Arguably, 
however, this is no more effort than the one required to 
manage a complex virtualization environment effectively. 
In fact, the performance and capacity planning effort 
necessary to assure stability in both environments appears 
to this observer to be very similar. 

 

9.0 The Future of Virtualization. 

Both Intel and AMD have announced strikingly similar new 
hardware designed with virtualization in mind. The Intel 
initiaive is called VT, while the AMD product is called 
Pacifica. This new hardware, scheduled to be available in 
2006, adds a new privilege level where the virtualization 
monitor will run. That will allow the virtualization monitor 
to run a guest OS at its normal ring 0 privilege level, 
rendering current privileged instruction emulation 
techniques obsolete. The new hardware will also include 
new new instructions to allow the Virtual Machine Monitor 
to launch a guest virtual machine and facilitate 
communication between a guest OS and the VM Host 
software layer. 

The new hardware appears to address the performance 
problems discussed here that plague the current 
virtualization solutions. Of course, a new generation of 
virtualization software will be required to exploit the new 
hardware. Both of the leading vendors of virtualization 
software report that they are actively working on new 
versions that will support the new hardware. With the right 
software support, for example, the new hardware 
environment could allow preferred guest machines to 
access native devices for better performance, although 
today we can only speculate about when virtualization 
software to permit that will be available. 
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