An Introduction to SAN Capacity Planning

Mark B. Friedman
Datacore Software
1020 Eighth Avenue South, Suite 6
Naples, FL. USA 34102

markf@datacore.com

Abstract.

Emerging technology that allows the construction of high performance storage area networks (SANs) requires extending
existing analytic frameworks that can accurately predict the performance of complex disk subsystems. This paper focuses specifi-
cally on two elements of emerging SAN technology: (1) the performance of Fibre Channel links and connecting hubs and
switches, and (2) the performance of in-band and out-of-band SAN data management protocols. Traces and timings from
benchmarking tests conducted with an in-band SAN data manager product are analyzed and discussed. Understanding this
measurement data should enable existing disk modeling approaches to be extended to encompass this new storage technology.

Introduction

Storage Area Networks (SANs) are constructed around
high bandwidth, low latency Fibre Channel (FC) connec-
tions between storage peripherals and computer hosts.
Exploiting Fibre Channel technology, SANs can be built
that interconnect large numbers of host computers and
peripheral storage devices. In SANS, storage resources no
longer need to be zethered to a specific host computer in an
inflexible way that restricts access to those resources.
Instead, in a SAN multiple host computers can gain direct
access to a common, shared pool of storage resources.

Some form of SAN management is naturally necessary
to mediate access to shared storage resources. This paper
examines two crucial elements of emerging SAN technol-
ogy: (1) the performance of Fibre Channel links and
connecting hubs and switches; and (2) the performance of
in-band and out-of-band SAN data management proto-
cols. Ultimately, pulling all these elements into a rigorous
conceptual framework for disk performance modeling,
such as the one formulated in [1], should allow us to
configure, tune, and manage the growth of high perfor-
mance storage networks.

Because storage area networking using Fibre Channel
technology is relatively new, it inevitably raises challenges
to storage administrators responsible for their configura-
tion and deployment. Fortunately, many of the elements
of SAN capacity planning are familiar. Magnetic disk
performance is a constant whether configured in a SAN or
more conventionally attached to a host computer. Cached
RAID disk subsystems, for another example, are also a
core component of SANS, raising familiar issues of
capacity vs. performance trade-offs. However, Storage
Area Networking does introduce some additional hard-
ware wrinkles, including optical Fibre Channel links and
switched networking topologies that add a new dimension

to the analysis. Understanding the performance of these
new hardware components is a crucial first step.

Another new component associated with SAN technol-
ogy that has a performance dimension is the SAN data
management protocol. It has become commonplace to
describe competing SAN data management protocols as
being either in-band or out-of-band.

In this paper we will discuss traces and timings from an
in-band SAN data manager software product called
SANsymphony that executes on a conventional Intel
server running the Microsoft Windows 2000 operating
system. In-band SAN data management means that some
SAN component actively participates in each disk data
access operation, redirecting it either to Intel server
memory (configured as a cache) or to the appropriate
physical device. For a variety of reasons, in-band SAN
data management is a superior approach to first generation,
out-of-band techniques. Because its data management
services are transparent to SAN clients, in-band SAN data
managers are much easier to deploy than out-of-band
approaches that normally require specific client file system
or device driver software and/or hardware modifications.
Moreover, as this document will discuss in detail below,
relatively inexpensive in-band SAN data managers can
provide superior performance using familiar memory-
resident caching techniques. [2]

What is a SAN?

Storage Area Networks are created around Fibre
Channel connections linking host computers and storage
peripherals such as magnetic disk drives, tape, etc. Figure
1 provides a conceptual view of a SAN, according to this
definition. Basically, some number of host computers are
linked to a set of storage resources. How the host comput-

Figure 1. A concepTUAL VIEW OF A SAN. IN A SAN, somE
NUMBER OF HOST COMPUTERS ARE LINKED TO A SET OF STORAGE

RESOURCES.
ers are configured or how the storage resources they are

attached to are configured is immaterial. What matters is
that there is an interconnection fabric that links these
components together, potentially allowing any host to
address any storage device that is attached to the storage
network.

It is not generally understood that installing Fibre
Channel technology alone does not create a SAN. Fibre
Channel merely provides the necessary plumbing that
make SANs possible. Once multiple SAN clients gain
access to a pool of shared disk resources, some form of
data management protocol is necessary to mediate access
between the clients and the storage devices. Some form of
user identification and authentication is required to ensure
that SAN clients only access the disks and/or files that they
are authorized to access. If volumes or files are shared, a
serialization and locking mechanism is also required to
preserve data integrity. If physical storage resources are
pooled and some form of virtualization is used to create the
logical volumes and files that SAN clients access, a resource
manager responsible for allocating and freeing physical
resources is necessary. Virtualization also requires ensuring
that each client’s view of the mapping between logical to
physical devices is current. These essential SAN data
management functions all transcend the traditional facilities
of Fibre Channel and its associated networking hardware.

SANs vs. NAS. SANs based on current technology
have one additional key requirement, namely that the host
computer clients on a SAN address SAN storage re-
sources, such as disk drives, directly using the SCSI
command set. This clearly distinguishes SAN technology
from Network-attached storage (NAS) devices, with
which they are apt to be confused. “SAN” may be “NAS”

spelled backwards, but that coincidence is not something

that helps to clarify the fundamental distinction between
the two approaches.

In a NAS environment, storage devices are directly
attached or tethered to specific host computers. These
hosts then permit access to their directly-attached disks
using network-oriented protocols such as nfs, CIFS, or
http. In NAS, disk access requests are transformed using
networking volume and file access protocols that also
specify matters such as security access and file locking.

Conceptually, a NAS environment looks like Figure 2,
showing two computers using networking protocols to
establish remote disk volume and file access. A network-
ing client establishes a connection with a file server using
standard protocols such as SMB (aka CIFS), nfs, or http.
These application level protocols run on top of the TCP
host-to-host networking protocol that is responsible for
setting up and managing the network connection between
host computers for the duration of a session. Routing
packets from one node on the network to another is
handled by the lower level IP layer, which, in turn runs,
on top of a Link Layer that interfaces directly to network-
ing hardware.

Because they leverage an existing TCP/IP inter-
networking infrastructure, NAS devices are ordinarily easy
to deploy. But remote file access mediated by traditional
TCP/IP-based networking protocols has inherent limita-
tions, which restrict the environments where NAS
machines can provide acceptable levels of service.

Performance considerations distinguish NAS from
SAN, favoring an interconnection technology specifically
designed for storage. Never optimized for disk access,
many aspects of the standard TCP/IP network protocol
are far from ideal for storage devices. For example, the
Ethernet protocol that furnishes the backbone technology
for Local Area Networking (LANS) uses a maximum
transmission unit (MTU) of 1500 bytes. Meanwhile,
SCSI commands transfer data in block-oriented chunks of
4 KB or larger. Data intensive applications like digital
video streaming often attempt to move data between the

TCP/IP

hardware
(switches, routers, etc.)

FiGure 2. A coNcePTUAL VIEW OF NAS. STORAGE DEVICES ARE
DIRECTLY ATTACHED TO SPECIFIC HOST COMPUTERS. THESE HOSTS
THEN PERMIT ACCESS TO THEIR DIRECTLY-ATTACHED DISKS USING
NETWORK-ORIENTED PROTOCOLS SUCH AS NFS, CIFS, OR HTTP.

computer and disk in chunks as large as 1 MB. Breaking
large chunks of data into MTU-sized packets (a function
of the IP layer) for transmission and then reassembling
small packets into larger application-oriented chunks is
inefficient and time-consuming. The performance of NAS
devices when the SCSI block size is not a good match to the
underlying network MTU is notoriously poor. (For one
typical example, see [3], especially section 9, pages 45-48.)
Another example is the acknowledgement mechanism
that TCP Host sessions use to confirm successful delivery
of each packet sent is unnecessary when computer hosts
access disk devices. Disk channels are reliable connections
that, compared to more transient networking connections,
are quite unlikely to fail. Consequently, a significantly
more efficient mechanism can be used that notifies the
host only when errors occur. This explains why most of
the current industry interest in direct network-attached
disks revolves around utilizing the IP packet routing layer,
bypassing the upper level TCP host-to-host layer.
Considerations such as these dictate that a new,
storage-oriented infrastructure is needed to connect
assorted computer hosts to assorted disks directly. Unlike
NAS, SANSs require constructing a new, separate and distinct
networking infrastructure built around Fibre Channel links,
adaptors, hubs, and switches. The SAN infrastructure
conceptually duplicates hardware that currently exists to
make LAN and WAN connections, an overlap in function
that is only natural since the interconnectivity goals of
both technologies are quite similar. (In fact, the designers
of the Fibre Channel specification deliberately borrowed
quite freely from computer networking technology.) This
duplication of function is unavoidable, however, if SANs
capable of virtualization with pooling of shared storage
resources are to be constructed. Without belaboring this
point any further, let’s proceed directly to a discussion of
the technical capabilities of Fibre Channel technology that
make this new world of storage area networking possible.
Because both NAS and SAN technology have their
place, a hybridization process has begun where elements
of NAS and SAN are commingled, blurring the finer
technological differences. Inevitably, we can expect hybrid
devices that incorporate elements of both SANs and NAS.
A NAS device that internally or externally accesses Fibre
Channel disks is one form of hybrid. Or, what shall we
call a networking client lacking direct SAN connectivity
that can still access a SAN client’s virtual disks using
networking protocols and hardware links. In another
hybridization example, a high availability SAN storage
manager cluster relies on TCP/IP connectivity to commu-
nicate status information to other nodes in the cluster.

Fibre Channel technology

Fibre Channel (FC) is a relatively new, standards-based
interface technology that functionally replaces SCSI to
link host computers to disk, tape, and other peripherals.

Compared to the older SCSI parallel bus hardware technol-
ogy that it was designed to supercede, the Fibre Channel
specification provides the following extended features:

. Support for high speed serial connections over
optical fiber and copper wire connections

. Support for extended distances (up to 120 km on
multi-mode fiber)

. Extended device addressing (up to 27 or 128
addresses on a Fiber Channel-Arbitrated Loop
segment; up to 224 or 16,000,000 unique addresses

on a multi-segment FC fabric)

. Redundant channel connections for reliability and
failover
. Dynamic, hot-pluggable optical interfaces

These extended capabilities of Fibre Channel hardware
sparked interest in developing storage area networking
(SAN), with the goal of seamlessly allowing host computers
to access pooled storage devices sharing an interconnection
fabric. Naturally, once there is direct connectivity between
multiple hosts and storage devices, it is no longer possible
to rely on host-centric data access and control protocols. This
leads to the requirement to develop native SAN data
management protocols that perform command and control
functions consistent with a distributed environment. We
intend to explore the performance implications of SAN
data management protocols in some detail in the body of
this paper.

SANSs also introduce new hardware that provides the
connectivity functions to link multiple host computers to
pooled storage resources. Managing the many physical
connections between computers and the storage pool is
the province of switching and routing hardware analogous
to LAN hubs, switches, and bridges. Understanding the
performance characteristics of this new link technology
and how that performance is impacted by hardware
connectivity options is a crucial new aspect of SAN
configuration planning. Below, we will attempt to remove
some of the mystery associated with FC by characterizing
the performance of this new hardware.

Connectivity

The Fibre Channel specification supports three
connection topologies: point-to-point, arbitrated loop,
and fabric. Point-to-point connections are simple links
between one FC controller and another. For the sake of
wiring convenience, Fibre Channel hubs are available that
simplify point-to-point interconnectivity. Fibre Channel-
Arbitrated Loop (FC-AL) connections support a dual loop
configuration (for redundancy and failover) capable of
accessing up to 127 target addresses on a single loop.
Switched networks, or the fabric topology, is by far the
most popular topology, mainly because it supports
extended addressing to up to 16,000,000 attached devices.
The potential for attaching that many host computers and

storage devices to the network accentuates the need for
extended data management services for these potentially
very large environments.

Switches are the main class of FC network gear that is
used to link hosts and devices to a fabric. Similar to
Ethernet switches, FC fabric switches provide dedicated
virtual circuits between ports with the full Fibre Channel
bandwidth available concurrently for each virtual circuit in
use. In one vendor’s switch implementation, for example,
shift registers associated with each port are connected to a
high bandwidth crossbar circuit. After establishing a virtual
circuit between input and output ports for the duration of a
packet transmission, bits that register on the inbound port are
promptly echoed on the outbound port. This kind of high
speed FC switching hardware where the complete virtual
circuit is confined to a single switch adds only about a
microsecond of latency to an FC packet transmission.

Multiple switches can be interconnected or cascaded to
extend the scope of the fabric beyond the number of indi-
vidual ports that a single switch contains. Switching a
packet transmission between cascaded switches introduces
additional complexity due to (1) the potentially longer
distances involved (each km of distance adds about 5
microseconds latency to the transmission) and (2) the
potential for contention on Inter-Switch links (ISLs). Due to
the myriad ways that switches can be interconnected, the
performance analysis of cascaded fabric switches grows quite
complex. Although a full discussion is beyond the scope of
this paper, interested Readers can review an informative
discussion of this subject in [4].

FC Protocol

Serial protocols look like bit streams on the wire. It is
common practice to transmit bit streams in recoverable
segment called packets, and Fibre Channel is no exception
to being packet-oriented. Similar to the OSI 7 layer
model that influenced the design of the TCP/IP Internet
protocols, Fibre Channel supports a set of well defined
layers that operate on packets, as illustrated in Figure 3,
which is adapted from the official specification.

Upper Level Protocol
SCsli IPI-3 HIPPI P Fc4
Common Services Fec3
Framing Protocol/Flow Control | Fc2
8B/10B Encode/Decode Fc1
100 MB/sec Physical Layer FcO

FiGURE 3. THE LAYERS OF THE FIBRE CHANNEL PROTOCOL.

It should be noted that FC protocol design decisions
reflect fundamental differences between storage area
networks and conventional TCP/IP-based networking.
FC’s deliberate divergence from cherished internetworking
standards developed with painstaking care over the last
twenty years is due to the need to operate networks for
storage devices efficiently. Transmissions between host
computers and peripheral storage devices demand both
high throughput and low latency; they need to be opti-
mized for those requirements. Moreover, the networking
links used to connect host computers and peripherals,
even in fiber-based storage networks that support dynamic
and non-disruptive reconfiguration, reflect persistent,
durable, and reliable connections. (Host computers
generally do not tolerate transient state changes that would
make a file system periodically appear and disappear.)

Serial protocols can accommodate much higher
transmission rates than the parallel bus technology used in
SCSI that FC supercedes. During the arbitration phase of
SCSI bus command processing, for example, an electrical
control signal must travel up and back on the parallel
hardware bus and allow time for target devices to respond.
The arbitration phase on a SCSI bus lasts approximately
500 microseconds before the SCSI command initiator and
target are latched. Command processing is followed by a
clean-up phase that quiesces the bus in anticipation of the
next transaction. This involves similar bus signaling that also
lasts about 500 microseconds. Delays of this duration were
tolerable when the SCSI bus ran at 5, 10 or 20 MB/second.
At higher transmission rates, however, more and more of the
SCSI bus bandwidth is consumed by this handshaking delay.
In addition, the lengthy electrical signaling needed in SCSI
to establish and tear down connection was eliminated in the
Fibre Channel serial protocol.

In contrast to TCP/IP, Fibre Channel pushes packet
flow control deep into the interface hardware. The FC2,
or Framing Layer, is responsible for generating packets of
the required size for outbound traffic and for re-assem-
bling them on the inbound side. Packets from multiple
transmissions can be interleaved, providing for very high
effective data transmission rates. The Framing Layer runs
in the interface hardware (both in the Host bus adapter
and at the target device), rather than utilizing an external
software stack. An advantage of this approach is that it
reduces the number of interrupts that attached hosts must
process. Rather than generate a host interrupt each time a
frame is received, a Fibre Channel adaptor need only
present one interrupt to the host computer at the conclu-
sion of a successful Read operation.'

1 In contrast, high-speed networking (gigabit Ethernet or faster) is
plagued by the overhead of interrupt processing. See, for example, [5].
Each Ethernet packet invokes processing by multiple layers of the
complex TCP/IP software stack. Processing a 1 Gb Ethernet link using
standard 1.5 Kb frames would theoretically generates 80,000 host
computer interrupts per second that would require processing by the full
TCP/IP software stack.

Another throughput-oriented efficiency results from
the FC Framing Layer’s guaranteed in-order delivery of
packets. In-order delivery greatly simplifies the buffering
logic for the node processing the inbound data stream.
Guaranteed delivery in a switched fabric ensures that packets
are never routinely dropped whenever there is contention.
The reliable, in-order packet delivery mechanism of FC also
eliminates the need for both (1) TCP-style acknow-
ledgement packets that have an acute impact on effective
data transmission bandwidth over extended distance links
and (2) complex retransmission time-out (RTO) logic in
the software stack that are necessary to deal with an
unreliable delivery service like IP. [6]

As Figure 3 above indicates, the lower Fibre Channel
levels were designed to support multiple upper level
protocols, including both SCSI and IP network traffic.
Theoretically, transmitting IP packets over FC links is one
way to achieve interoperability of FC and IP networks. In
addition, there are currently several industry initiatives
attacking the interoperability problem from the opposite
direction by encapsulating SCSI commands in IP packets.
The ultimate goal of both exercises is to let a single optical
wiring infrastructure carry traffic to and from both types of
devices. The convenience factor of having hybrid network
gear that can handle both IP and SCSI traffic appeals to
organizations facing the cost of installing a new, optical
fiber infrastructure. One sobering assessment of this
inevitable convergence is that the performance of hybrid
networks is apt to be less than optimal based on the need
to process two workloads with starkly different character-
istics. Applications that demand the highest levels of
storage or networking performance in this brave new
world will be better served when SCSI and IP traffic are
confined to dedicated sub-networks.

Fibre Channel performance

The role Fibre Channel technology plays in SAN
performance is relatively straightforward. The Fibre
Channel protocol increases the performance of typical
SCSI command processing by implementing faster links.
It also eliminates the lengthy SCSI bus arbitration phase.
The result is a peripheral connection technology that

delivers both high bandwidth and low latency. This
section explores these two aspects of Fibre Channel
performance.

To ease the transition to a new interface technology,
Fibre Channel fully supports the existing SCSI command
set. In a SAN, SCSI commands are encapsulated in a
packet-oriented protocol designed to support high speed
serial links. Currently, the most common form of Fibre
Channel technology utilizes optical fiber links running at
100 MB/sec. Recently, higher speed 200 MB/sec links
have been introduced. It is also possible to run the Fibre
Channel protocol over copper wire for short distances.
The timing and test results discussed here were all
obtained using 100 MB/sec optical FC connections.

Figure 4 below illustrates the timing for a typical 16
KB Read request from a SAN client over a 100 MB/sec
Fibre Channel link to a SANsymphony Storage Domain
Server (SDS). The timing data here was acquired using a
Finisar hardware monitor. A complete 16 KB Read
request is performed in approximately 330 psecs. The
command execution is broken into a number of different
frames processed in three distinct phases, as illustrated.

Initially, a small frame containing the SCSI Read
command is processed. The SANsymphony SDS software
explicitly responds to the SCSI Read request, translating
the virtual SCSI disk address known to the client into a
physical address for an SDS-managed disk. The software
then searches the SDS data cache for the data requested.
On a cache hit, data transfer can begin immediately, and
no further delay in processing the Read request is neces-
sary. The Command processing phase lasts approximately
140 psecs from the initiation of the request to the first
data transfer frame that is returned by the SDS in reply.
We will explore what happens during that 140 usecs of
processing inside the SDS in a moment.

The Command processing phase is followed by a reply
that initiates the data transfer phase. This consists of 16 1024
byte data frames that are processed approximately every 10.2
Usecs, which corresponds to the 100 IMB/sec instantaneous
transfer rate that first generation FC links support. The block
data transfer phase is followed by a frame that contains the
SCSI status that marks the command complete. There is a

SCSI Read
Command
Length = Status
x’4000’ 16 x 1024 Byte Data Frames Frame
S

27 usec
o IIIIIIIIIIIIIIII

L e R

o 10 20 30 40 50

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

FiGURE 4. THREE PHASES PROCESSING A 16 KB SCSI Reab command over A 100 MB/sec FC Link.

delay of about 27 psecs between the last data frame and the
transmission of the status frame.

SCSI Write command processing on Fibre Channel
runs slightly slower. There is a similar 140 psec processing
delay for the initial SCSI Write command request. As
required by the Fibre Channel specification, the protocol
requires that the device return an additional setup frame
that acknowledges the Write request. In this example, the
SDS software impersonating the device generates this
setup frame in reply. Following this frame, there is a
further delay of 30 psecs at the client before the data to be
transferred from the initiator to the target device appears
on the link. In the protocol trace, 1 KB data frames then
start to appear at regular 10.275 usec intervals. After the
last data frame, there is a final 30 psec delay until the
SANsymphony SDS issues the SCSI status frame indicat-
ing successful completion of the request. Note that the
SDS posts a successful completion status following receipt
of the full data payload. This is known as a fass write to
cache. Writes require scheduling an I/0 to the disk
immediately to update the permanent copy stored there.
SANsymphony software schedules the disk update to
occur immediately, but it is performed asynchronously so
that the SAN client is not delayed for the duration of a
physical disk operation.

Overall, processing the Write request takes about 30
Usecs longer than the simpler 16 KB Read request, as
illustrated in Figure 5. When the virtual volume is
protected using SANsymphony’s high availability, disk
mirroring feature, Write commands are subject to an
additional delay when they are propagated to a standby
SDS. When virtual disks are protected by mirroring,
successful completion status for Writes is not presented
until the write data is present in two SDS caches. This
approximately doubles the latency for Write requests.

These timing illustrate the clear performance advantage
that FC holds over the older SCSI parallel bus interface
technology. A 16 KB Read or Write command can be
processed on a Fibre Channel link in roughly the time it

Fiber Channel Latency (16 KB)

‘D scsi d B Write setup [1Data frames []1SCSI status |
Write l
Read l
[]] ()]
o ° ® o

microseconds

FIGURE 5. A COMPARISON OF THE LATENCY IN PROCESSING 16 KB
SCSI Reap anb WRITE commands over A 100 MB/sec FiBre
CHANNEL LINK.

takes for SCSI bus arbitration to occur. SCSI bus arbitra-
tion and clean-up phases block all other traffic on the bus
for the duration of the lengthy signaling and synchroniza-
tion process. In contrast, because FC bit streams are
packet-oriented, it is possible to interleave the packets
from multiple commands on an FC link. For example,
during the time that one initiator is idle waiting for a
reply, another initiator can be transferring data. The
capability to overlap processing of multiple SCSI com-
mand leads to very effective utilization of Fibre Channel
links. On a single 100 MB/sec link, for example, using
multiple initiators, it is no problem sustaining 80 MB/sec
or better effective data transfer rates. In contrast, effective
utilization of a SCSI parallel bus reaches only about 50%
of the rated bus speed.

The performance characteristics of high bandwidth,
low latency Fibre Channel links, along with the speed and
capacity of FC switches, simplifies at least one aspect of
SAN capacity planning. Assuming for a moment that the
cost per port for an FC switch is not an obstacle, a SAN
infrastructure linking hosts to storage devices with no
apparent performance constraints can be constructed
without much effort. Cascaded switches and long haul
connections are complicating factors, as noted earlier, but
we suspect these are relatively minor concerns in connect-
ing most server farms to pooled disk resources today.

In practice, of course, it is not cost effective to dedicate
an FC link to every host-disk connection. This leads to
the usual channel configuration decisions and trade-offs
involving string length and string balancing. Native disk
device transfer rates remain less than 1/2 the capacity of the
FC link. This means that it only takes two or three busy
devices (e.g., 3 disks being read in parallel by a multithreaded
back-up process) on an FC link to saturate it. So, while it
is possible to string together 127 devices on a single FC-
AL loop, for example, performance considerations often
dictates shorter string lengths. Avoiding I/O hot spots
within a complex arrangement of disk and tape devices is
also problematic. Until software can be devised to auto-
mate the process, SAN administrators will need to
rebalance the I/0O workload manually across the available
hardware periodically.

SAN data management protocols.

SAN data management protocols mediate host
computer access to pooled disk and tape storage resources.
It has become commonplace to differentiate between in-
band and out-of-band data management. In-band refers to
an approach where the data management protocol actively
manipulates each and every storage access operation. Out-
of-band refers to an approach where the SAN data
management protocol is actively involved only in setting
up sessions, and is passive thereafter, unless there is an
event that changes the state of an active session. One
useful way to look at the distinction between in-band and

out-of-band data management is to compare them based
on where the data management protocol responsible for
virtual to physical disk translation runs during an I/0
operation. In out-of-band solutions, virtual:physical disk
translation runs on the client. In in-band solutions, it runs

on the SAN appliance, transparent to the SAN client.

Out-of-band data management. The most common
out-of-band approach requires that the SAN client access
a SAN metadata controller (SMDC)? during session setup
prior to performing any I/0O operations to SAN-managed
storage resources. Volume and/or file metadata in this
context refers to the data about disk volumes and files that
a SAN manager component must maintain: e.g., how the
virtual volume is mapped to physical disk resources, which
SAN clients are authorized to access which volumes and
files, what active sessions hold which resources, etc. Once
the initial request has been authenticated by the SMDC,
the appropriate volume and/or file access metadata is
returned to the client, allowing the SAN client to then
access managed storage devices directly.

Depending on the approach, having acquired an access
token, the client accessing SAN storage proceeds at the
either the physical block or logical file level. Again these
approaches are distinguished by where on the client the
logical:physical translation function is performed. File
level accesses require software inserted into the file system
layer of the host computer’s I/O manager software stack.
Block level access requires that the translation occur in the
disk driver or Host bus adapter software that interfaces
directly with the hardware.

Figure 6 illustrates the sequence of events that structure
an SMDC client access session. The session begins when
the client requests access to a pooled storage resource (usually
a logical volume or file system). The client then waits while
it has its request authenticated by the metadata controller.
The metadata controller eventually furnishes the SAN
client with a token that is required to access the disk or
disks involved. This token includes the Fibre Channel and
SCSI addressing information that the SAN client needs to
access the resource directly. Once its request has been
authenticated, the SAN client proceeds to access the
storage hardware involved directly, as illustrated.

The performance implications of out-of-band data
management protocols are two-fold. First, there is latency
associated with accessing the metadata controller during
session setup. The extent of this delay is highly dependent
on the specific architecture of the SMDC, the contention
for this machine in the configuration, etc. But, whatever
the specific proprietary implementation, session set-up
handshaking is only performed once at session initializa-
tion. Even if the SMDC requires periodic reauthorization

2 Here and elsewhere we adhere to the SAN classification scheme and
other terminology attributed to storage industry analyst Randy Kerns of
the Evaluator Group, www.evaluatorgroup.com.

= -
e . %
i “‘-.x :
r—a - y
- = k =

Metadata
Cantralicr

FiGURE 6. THREE PHASES IN SETTING UP A DATA ACCESS SESSION
WITH A SAN METADATA CONTROLLER. THE INITIAL REQUEST FOR
ACCESS (1) IS AUTHENTICATED BY THE SMDC, WHICH RETURNS AN
ACCESS TOKEN TO THE SAN CLIENT (2). WITH THE TOKEN IN HAND,
THE SAN CLIENT CAN BEGIN TO ACCESS THE DISK DEVICE DIRECTLY (3).

and renewal of the client’s authorization, the performance
impact of session initialization should still be relatively
minor. So long as SMDC access remains relatively infre-
quent, the performance impact of this out-of-band access is
minimal. This is not the end of the story, however.

Having obtained the appropriate credentials from the
SMDC, the SAN client is able to then issue SCSI
commands directly to SAN disk and tape devices. The
metadata acquired during session initialization provides
the SAN client with the information it needs to access
SAN storage resources directly from that point forward.
To accomplish this, the individual SAN client executes a
function that translates virtual device addresses to physical
devices addresses. So long as SAN virtual address transla-
tion runs as a software function executing somewhere on
the SAN client, the performance impact of the SMDC
approach should remain low, adding just a few microsec-
onds to device service time. While it is not true that there
is no incremental overhead associated with the SMDC
approach, it is safe to say that the added overhead per I/0
is minimal in most cases. Academic and industry experts
that champion this approach to SAN data management
make much of this fact.> However, this presumed perfor-
mance edge has not proven to be the overriding success
factor that its champions have predicted. In fact, the cost
and administrative burden of maintaining a SAN managed
by a metadata controller trumps the performance consid-
erations almost every time.

3 See, e.g., [7]. Dr. Gibson first proposed an architecture for SAN
metadata controllers in [8]. For more information on the Gibson’s
influential approach, see http://www.pdl.cs.cmu.edu/NASD/.

In the SAN metadata controller approach, the price for
minimizing the performance impact is the cost of main-
taining client-side software for each and every SAN client.
When the SAN is used to interconnect only a few com-
puter hosts, maintaining SAN data management software
on each client may not be prohibitive. But as the number
of SAN clients increases and the SAN is used to intercon-
nect hosts running different operating systems, the
requirement to distribute and maintain software on each
SAN client grows more burdensome and expensive. The
software installation and maintenance burden associated
with SAN metadata controllers has slowed down their rate
of adoption considerably.

In-band data management. The leading alternative to
the out-of-band SAN metadata controller approach is in-
band SAN data management. The in-band approach was
initially dismissed by many industry observers as somehow
too intrusive and technically inferior to the “direct” device
access method offered using an SMDC. However, in-
band data management protocols do not require SAN
client-side software, so they are much easier to deploy.
Once deployed, they are also easier to grow and modify.
No client software to purchase makes in-band SANs less
expensive to acquire and dramatically less expensive to
administer. In the hands of capable practitioners, in-band
SAN data management has emerged as the more flexible,
more cost-effective, and more easily deployed approach.
An in-band implementation can also outperform an
SMDC architecture, which is the topic we intend to
explore at some length here.

SAN appliances. There are several ways to implement
an in-band SAN data management protocol. One of the
most popular is to use a SAN storage appliance, a dedi-
cated SAN storage controller of some sort. It has been
relatively straightforward for vendors of storage processors
like the EMC Symmetrix, IBM Enterprise Storage Server
(ESS), or the Xiotech Magnitude to equip these units with
front-end Fibre Channel interfaces and turn them into
serviceable SAN appliances. In this form of SAN appliance,
the necessary SAN data management services such as
virtualization run inside the appliance, along with more
traditional storage data management services like caching
and RAID mapping. Running virtual:physical disk
translation inside the appliance makes access to SAN
storage resources transparent to SAN clients. Since
changes applied at the appliance are immediately visible at
clients, there is also the benefit of centralized administra-
tion. However, this benefit tends to diminish as more
appliances are added to the SAN or appliances from
different vendors are deployed.

Before proceeding to a discussion of the performance
aspects of in-band SAN appliances, it is appropriate to
address a common point of confusion about them. It may

not be immediately obvious that a storage processor
outfitted with front-end FC interfaces functions as an “in-
band” SAN storage manager. However, storage processors
have long relied on in-band data management protocols,
redirecting logical volume requests to RAID-mapped disk
arrays, for example. Specifically, a standard storage
processor function allows a storage administrator to group
physical devices, specify a RAID mapping (RAID 0/1
disk striping with disk mirroring, for example, or RAID 5
redundancy with a rotated parity disk), and export that
grouping as a SCSI LUN (Logical Unit Number) that is
directly addressable by a host computer. Each host
computer-generated SCSI command to read or write
some logical disk address must be processed in-band by
the storage processor and translated according to the
RAID mapping scheme into an actual physical disk
location. For example, a direct-attached host computer
sees a SCSI LUN that represents a 72 GB physical disk. The
storage processor understands that the 72 GB LUN is a
logical entity formed by creating a RAID 5 4+1 parity group
using five 18 GB capacity drives. Logical:physical disk
translation, which is transparent to the attached host, is
performed by a control program inside the storage
processor that figures out which location on the five
physical disks associated with the LUN to Read or Write.
The same, effective techniques for transforming host
SCSI commands carry over to current SAN appliance
products. Perhaps, due to all the public fuss about emerg-
ing SAN technology, people expect more from a SAN
appliance than a simple retooling of conventional storage
processors to support Fibre Channel interfaces. But, a
quick survey of SAN appliances available from the major
hardware vendors shows little architectural difference
between current products and the previous generation of
storage processor equipment that could only speak SCSI.
The SAN data management protocol being incorpo-
rated into every I/O operation is, on the face of it,
intrusive. With in-band protocols, a SAN data controller
processes every individual client access request involving a
SAN-managed storage device. At a minimum, for
example, logical:physical disk translation occurs in-band.
This proven, effective approach is very appropriate for
SAN appliances to adopt. Even though in-band redirec-
tion of SCSI commands is intrusive, it is performed
routinely by all enterprise-class storage processors. This
intrusion is justified on several grounds, not the least of
which is necessity, allowing storage processors to imple-
ment a variety of useful data management services. In the
case of RAID, for example, in-band transformation of
host SCSI commands to support RAID provides extended
disk reliability. Necessity being the mother of invention,
in-band intrusion is further justified when one of the
services storage processors routinely provide is caching
frequently accessed data in RAM to improve performance.

As noted above, there are only relatively minor archi-
tectural differences between previous generation storage
processors and current SAN appliances from the same
vendor. What architectural changes that have occurred
were motivated by performance considerations raised by
high bandwidth, low latency Fibre Channel technology.
The major engineering challenge storage processor
vendors face in transforming older designs into SAN
appliances is ensuring there is sufficient internal processor
speed and internal bus capacity to handle high-speed FC
interfaces. Storage processors that were originally built
using a number of small, inexpensive microprocessors
(e.g., the Intel 1960) designed specifically for real-time
applications may need a power boost when they encounter
FC bit streams. Internal data bandwidth can also be an
issue. A recent example is the EMC CLARiiON FC4700
that utilizes twin Intel Pentium III 733 MHz micropro-
cessors, much faster hardware than the previous
generation CLARiiONs that used PowerPC chips.

The fact that there are only minor differences between
current SAN appliances and previous generation SCSI-
attached storage processors simplifies capacity planning.
The newer machines perform similar to the older ones,
except that they benefit from faster front-end and internal
FC interfaces. As noted earlier, the FC protocol elimi-
nates the time consuming SCSI bus arbitration phase.
Because it supports packet interleaving, it can sustain
effective data transfers rates that are fully 80% of the total
available bandwidth. Finally, it provides faster data
transfer rates clocked at 1 Gb/sec.

A general rule for projecting the performance improve-
ment of these subsystems is that so long as internal
processor speed and bus capacity are not a constraint,
storage processor performance scales according to front-
end capacity (i.e., FC interface speed) for cache-friendly
workloads and according to disk speed for write-oriented
and cache unfriendly workloads. If you know the through-
put capacity of storage processor using slower SCSI or
ESCON front-end interfaces, it is straightforward to project
the performance of the same box retrofitted with faster FC
interfaces by factoring in the improvements discussed in

Figures 4 and 5 above.

SAN data managers. A second way to implement an
in-band SAN data management protocol is to incorporate
SAN data management functions into an existing com-
puting platform. This approach, which has become known
as a SAN storage manager, is distinguished from a SAN
appliance by the fact that it is not an extension of an
existing disk storage subsystem. A SAN storage manager
is a separate, dedicated component placed between
interconnected host computers and disk and tape peripher-
als. Below we will have the opportunity to look in detail at
the performance of one SAN storage manager, Datacore

Software’s SANsymphony.

Datacore’s alternative to building a SAN storage
manger is a software-only approach that utilizes off-the-
shelf Intel server hardware running a standard version of
the Microsoft Windows 2000 operating system attached
to any variety of standard disk and tape peripherals.
Minimum requirements for SANsymphony are an Intel
server with two processors running Windows NT" or 2000,
at least one FC Host Bus adaptor, and 256 MB of RAM,
normally configured as a standalone storage management
machine. In addition, a cluster of at least two SDS PCs
are normally configured for fault tolerance and continuous
operations. With Datacore’s SANsymphony software, it is
possible to create a fully functional SAN storage manager
using common, inexpensive hardware components,
including Intel-based servers, Windows 2000-compatible
disk and tape subsystems, and FC Host Bus adaptor
(HBA) interface cards.

SANsymphony Storage Domain Servers (SDSes)
implement an in-band SAN data management protocol,
as illustrated in Figure 7. All client access to pooled disk
resources is routed through the SDSes. Similar to a SAN
appliance, virtual:physical disk translation occurs inside
the SDS. Data access requests are then either satisfied
from internal server RAM configured as a cache or an I/O
to disk scheduled by the SDS directly. (Functionally, this
is quite similar to what goes on inside a SAN appliance.) As
indicated, multiple SDSes can be configured into a N+1
fault tolerant cluster. An SDS cluster provides fault-
tolerant disk mirroring with automatic failover to a
surviving node or mirrored disk.

Unlike conventional storage processors that are avail-
able in a limited variety of standard configurations, a
SANsymphony Storage Domain Server (SDS) can be
assembled from a wide range of equipment alternatives. In
fact, the sheer number of hardware alternatives to consider
can be daunting, ranging from simple 2-way Intel servers to
4 and 8-way machines with 4 GB or more of RAM. Besides
sizing the server machine where SANsymphony runs, the
capacity planner must also decide (1) how to configure the

attached disk subsystem — the amount of disk capacity,
SAN Clients

Storage
Domain
Servers

Figure 7. AN IN-BAND SANsYMPHONY STORAGE DoMAIN SERVER.

number of disk actuators (devices), RAID mapping, string
depth, internal pathing, etc. — and (2) how to configure
the FC switched fabric.

Below, we will discuss sizing a SANsymphony Intel
server, focusing specifically on the areas of processor

speed, number of processors, and PCI bus bandwidth.

The 1/0 capacity of an SDS
Because the SANsymphony SAN storage manager

software runs on a standard Intel-based server, the
performance and sizing considerations for an SDS are
identical to the ones that arise with standard Windows
2000 Intel application servers. This allows us to make use of
standard performance and tuning tools that operate in that
environment. We can also draw on existing expertise in
Windows 2000 performance topics.* For SANsymphony
Storage Domain Server sizing, this general knowledge of
Intel server hardware and Windows 2000 operating
system performance needs to be augmented by specific
expertise in the operation of the SANsymphony software.

For the sake of simplicity, in this document we will
assume that all FC connections between SAN clients,
SAN-managed disks, and SANsymphony SDS machines
can always be made using a single Fibre Channel switch to
eliminate from consideration the complexity cascading
fabric switches introduces. Given the availability of
switching gear capable of packaging as many as 256 ports
in a single unit, this appears to be a reasonable simplifying
assumption.

Rather than discuss SANsymphony performance in the
abstract, we will illustrate the discussion with measurement
data obtained from exercising an SDS in a benchmarking
test environment. We conducted a series of benchmarks,
only some of which space permits describing below, in an
attempt to characterize SANsymphony performance over a
broad range of conditions. We will try to place the
measurements we obtained into a conceptual framework
that allows you to generalize from these specific results.

Benchmark environment. We obtained all the mea-
surements discussed here from a single SDS node running
a prototype of SANsymphony version 5. The SDS
machine was a 4-way 550 MHz Intel server running
Windows 2000 with Service Pack 1 installed. The server
contained three separate PCI buses, all running at 33
MHz. Two of the buses supported 32-bit cards, while the
third could handle PCI-2 64-bit cards. The SDS con-
tained 9 QLogic 2200 FC adaptors. The configuration of
this SDS machine is depicted in Figure 8. Seven Intel

4 Microsoft includes a performance and tuning applet called System
Monitor with every version of the Windows 2000 operating system.
Additional Windows 2000 performance tools and documentation are
available in the Windows 2000 Resource Kit. [9] is an excellent general
purpose technical references on Windows 2000 OS internals. Specific
technical references for Windows 2000 server performance, tuning, and

capacity planning topics are [10] and [11].

4 X 550 MHz Pentium Il

System bus

Qlogic 2200

Qlogic 2200
HBAs

PCI1:33 MHz X 4

FiGURE 8. THE CONFIGURATION OF THE SDS SERVER USED IN THE
BENCHMARK TESTS.

clients, all running Windows 2000 on 2-way 300 MHz
workstations, were attached to the SAN. Each client
contained a single QLogic 2200.

Two racks of 10 Eurologic SANbloc disks featuring
Seagate 10,000 RPM Cheetah FC drives were used to create
SAN client disks. The SANsymphony SDS server, Intel
clients, and JBOD disks were all interconnected using a 32-
port inRange fabric switch. Using SANsymphony’s
SANManager administrative tool, we created 14 virtual
volumes, each on a dedicated physical disk, and assigned
them two at a time to the SAN clients. We installed the
Intel Jometer disk benchmarking utility on one of the
client machines and the remote Dynamo benchmarking
agent on the remaining six clients. The SDS machine and
the SAN clients were all instrumented using Performance
SeNTry from Demand Technology Software, performing
data collection every 10 seconds. The Windows 2000
defaults for diskperf were used, collecting performance
statistics for Physical Disk data only. Besides disk perfor-
mance, we also collected data at the system, process, and
networking level.

In addition, we collected SANsymphony internal
performance statistics, which are available as standard
Windows 2000 performance Objects and Counters.
SANsymphony provides extensive measurements on SDS
throughput, cache effectiveness, and other areas of
interest. Understanding the SANsymphony performance
statistics requires some knowledge of the internal architec-
ture of the software, a topic we explore below.

SDS software architecture. A SANsymphony Storage
Domain Server is a conventional Intel server running
Windows 2000 and the SANsymphony software package
that allows the server to function as a dedicated in-band
SAN storage manager. The SDS software architecture is
conventionally represented as a stack where each layer

SAN client

r 1/0 request

SANsymphony
Initator/Target Emulator
FE€ Adapter Polling Threads

Fault¢ Tolerance

Data €ache

Native Win2K 1/0 Manager
File System Driver

Disk Driver

Disk perf (measurement)

FC€ Adapter driver

D
i
D

FiGURE 9. THE LAYERED ARCHITECTURE OF THE SANSYMPHONY
SOFTWARE STACK.

optionally operates in sequence on SAN client I/O
requests, as depicted in Figure 9.

Dedicated kernel threads with operating system level
privileges run the stack. They begin by interrogating the
Fibre Channel interface cards installed in the SDS,
capturing individual SAN client I/O requests, and
operating on them. To achieve higher levels of perfor-
mance than is otherwise possible on an all-purpose
computing platform like Windows 2000, SANsymphony
uses polling, where its kernel threads run continuously
interrogating the Fibre Channel Host bus adaptor inter-
face cards, constantly looking for work. An FC HBA
polling thread is significantly more responsive than an
interrupt-driven mechanism that is better behaved in a
general purpose computing environment. Because polling
provides more predictable device service time, it is the
technique used in most real-time environments, including
dedicated communications and storage controllers. Of course,
polling is less efficient so it is not the approach used on
servers designed for general purpose computing. Users are
cautioned to run SANsymphony on a machine that is
dedicated to running the SDS, which is a commonsense way
to deploy the software anyway.

Even though it uses polling, the SANsymphony
software is designed to co-exist reasonably well with other
applications that might be running on the same Windows
2000 server. In practice, these other applications are likely

to be limited to things like the SANsymphony GUI,
performance and storage resource monitoring, and native
disk-to-tape backup utilities. SANsymphony creates a
maximum of n-7 polling threads where # is the number of
processors available for use so there is always some
residual capacity available for other applications. At no
point will SANsymphony ever take over all the processors
in a standard Win2K symmetric multiprocessing configu-
ration, always leaving at least one processor available for
assorted Windows 2000 housekeeping functions. Using an
adaptive mechanism that recognizes when client I/O
requests are likely to begin queuing, SANsymphony starts
with one dedicated polling thread, but will then automati-
cally dispatch additional polling threads as the 1/0
workload increases. At any one time, the number of
SANsymphony kernel threads that are dispatched varies
based on the load. In case the remaining Win2K non-
Fibre Channel initiated processing load is constricted on a
single processor, the maximum number of SANsymphony
polling threads can also be configured manually.

Whenever an SDS polling thread determines that an
FC interface card has a request outstanding, it is processed
in-line by the kernel thread. As indicated in the diagram,
the FC polling threads fields both initiator and target
SCSI device requests. SAN clients issue I/O requests to
virtual disk targets, which are indistinguishable from
ordinary SCSI physical disks. These requests are inter-
cepted and interpreted by SANsymphony’s Target Mode
emulator software, which impersonates the physical disk
entity served up by the SDS. Executing the next layer of
the SANsymphony software stack, the thread then
authenticates a request to Read or Write a SANsymphony
virtual disk. If valid, the request is processed by the
memory caching layer. If the data requested is already
resident in memory, it is a cache hit and the client I/O
request is processed immediately.

On a Read cache miss, the SANsymphony kernel thread
creates a standard I/O Request Packet (IRP) that is passed to
the native Windows 2000 I/O Manager to read data from
the associated physical disk. This allows SANsymphony to
manage any disk device that can be directly attached to the
SDS, including native SCSI disks. The data requested is
copied first into cache memory and then returned to the
SAN client across the Fibre Channel link.

On a Write, the request is passed through to a fault
tolerant layer that supports both synchronous and asyn-
chronous disk mirroring using an active link to another
node in the SDS cluster. The fault tolerant layer is
responsible for keeping the mirrored SDS node and disk
in sync with the original, so it schedules an I/0O to the
other SDS. Once a copy of the data is safely resident in
two SDS caches, the Target mode driver signals the SAN
client that the Write request was successful. Meanwhile,
both SDS nodes schedule a physical disk update to harden

the changed data on auxiliary storage as soon as possible.

Processor consumption. First, let’s look at processor
consumption for various SANsymphony functions on an
SDS node. We will look at both best case performance when
the SDS has little to do except poll its Fibre Channel
interface cards looking for work and worst case performance
when the SDS is serving up small Read I/O requests from
cache. The latter operation, which leads to the highest I/O
rates, is the most CPU intensive of any SANsymphony
function.

When SAN clients are idle and the Fibre Channel
interface polling engines on the benchmark machine have
nothing to do except look for work, SANsymphony
running on our benchmark machine recorded slightly
more than 375,000 unproductive polls/sec. That works
out to one kernel thread checking a Fibre Channel
interface card every 2.66 usecs. Except for the activity
associated with the polling thread, the system was other-
wise idle. The overall CPU utilization for the system was
just over 25%, reflecting the relentless polling activity and
very little else (except for active measurement tasks). This
2.66 psecs of delay associated with an unproductive device
polling sequence represents the minimum latency of a FC
interface request.

Now let’s look at the timing of a successful polling
operation. With seven SAN clients issuing small block
512-byte requests that could be satisfied from cache,
SANsymphony increased the number of polling threads to
the maximum level of three on the 4-way 550 MHz test
machine. Together, with three polling threads active, the
SDS machine was able to process about 40,000 I/O
requests per second. At 40,000 IOPS, SANsymphony
recorded 80,000 productive polls. Each I/0 request
processed by the SDS evidently required two successful
FC interface polls — one to accept the client’s original
Read request and a second after the data was transferred
from cache memory back across the FC link to the client.

In addition to the productive polls, the polling engines
still managed to issue more than 31,000 unproductive

SA Nsympheny "in-band” Latency (16 KB)

Wrie

Read

=t

[T 2

Ficure 10. SDS IN-BAND LATENCY AS A FUNCTION OF OVERALL
SERVICE TIME FOR A 16 KB READ.

OO

polls in the midst of all that real work. Assuming the same
2.66 psecs to complete an unproductive polling operation,
the unsuccessful polls consumed about 83 ms. of processor
time each second. With three processors running full tilt
at 100% busy (the fourth was almost idle, except for
measurement tasks), we can then calculate the latency
associated with an in-band operation:

((3,000,000-(31,000%2.66))/40,000

namely, 73 psecs of processing delay per request.

Notice that this 73 psecs in processing time occurs over
two successful polls. The first set of processing that the
SDS performs occurs during the 140 psec delay illustrated
in Figure 4 following the transmission of the SCSI Read
command. The second successful poll occurs after the
SDS sends the last data frame, prior to sending the status
frame. SDS in-band processing represents 73 psecs during
two protocol operations that together last about 167 psecs.
We conclude that “in-band” SDS processing delays
account for about 44% of the service time, the remainder
apparently taking place inside the interface card itself,
which contains a processing element considerably less
powerful than an Intel Pentium II1.°

During the Write operation illustrated in Figure 5,
there is a third successful poll issued to return the Write
setup acknowledgement frame. We note that the delays
associated with both the Write acknowledgement and the
SCSI status command account for about 30 psecs of
latency. The simple processing associated with handling
these events in both the SDS polling thread and the FC
interface card suggests some minimum latency factor for
in-band transactions in this hardware environment, in this
case about 30 psecs. Speculating about how to apportion
this minimum latency between the SDS internal code path
and the interaction with the FC HBA card leads to a
picture like Figure 10, detailing the relative contribution
of each processing component for both Reads and Writes.

Capacity planning. We were able to measure indirectly
approximately 73 secs of delay that takes place inside the
550 MHz Intel server benchmark system associated with
SANsymphony in-band processing of a SCSI disk Read
command. It should be evident from this measurement
that the SDS code stack is not a very CPU-bound process.
In fact, the only way to simulate a processor bottleneck in
our test configuration was with an artificial workload using
uncharacteristically small 512-byte blocks. For more
realistically sized 4K and 16K blocks, the SDS configura-

5 Processor capacity inside the HBA has a major impact on performance,
something that is evident when you test successive generations of the
vendors’ cards. In the case of the QLogic 2x00 series, for example, we saw
an effective throughput increase of 40-60% in moving from the 2100 to
the 2200, with a similar boost provided by current generation 2300 cards.
For this test configuration we did not have enough of the newer 2300s to
go around, so we opted to use the 2200s throughout to maintain
uniformity.

tion bottleneck quickly shifts to other resources, as we will
discuss in a moment.

It is worth noting that the SDS internal processing
delay should scale with the speed of the processor on the
SDS server. On an Intel server equipped with 1 GHz
engines, for example, we expect that the in-band process-
ing delay would drop below 40 usecs. On today’s top of
the line 1.7 GHz processors, latency falls further to below
24 psecs per I/0O operation. At these faster processing
speeds, it becomes even more important to step up to the
latest generation Fibre Channel interface cards to take full
advantage of faster CPUs. In Figure 11, we project the
latency for a 16 KB Read request for next generation
hardware, upgrading first to a 1.7 GHz processor and then
upgrading to the 200 MB/sec FC HBAs that are just
beginning to appear. We project that SAN-symphony
total device service time can be reduced a little over 50%
using next generation Intel and FC hardware.

This is also a good place to remark upon some of the
internal statistics that the SANsymphony software
maintains. One noteworthy measurement to track in the
current context is the rate of productive polls, calculated as

Produdtivepolls/sec* 100/
(Produdivepolls/sec+Unprodudivepolls/sec)

Internally, SANsymphony calculates this ratio every few
seconds to determine whether sufficient polling threads
are active. When the rate of productive polls rises to 50%,
SANsymphony will dispatch another polling thread, up to
the maximum number of polling threads permitted (one
less than the number of processors). As a configuration rule
of thumb, if the rate of productive polls remains above 50%
and SANsymphony is running the maximum number of
polling threads for an extended period of time, there is a
CPU capacity constraint. In this benchmark test, for instance,
the rate of productive polls was 72%. Configuring additional
engines, faster engines, or some combination of both is
warranted under these circumstances.

Mext generation S ANsSymphony performance
{projected)

I I
I OS0E 0O PCevcrisca ODe s residcr

ToD MHI & 00
MEB g

17o0 MHz

FIMHI

L] 100 100

Figure 11. ProJecTING SANSYMPHONY PERFORMANCE ON NEXT
GENERATION PC aND FC HBA HARDWARE.

SDS scalability. Because the CPU processing load of
an SDS in-band SAN storage manager is modest and it is
relatively easy to procure fast Intel engines, users of a
SANsymphony SDS are not likely to encounter serious
processor bottlenecks. Testing with more realistically sized
4 and 16 KB blocks, the potential bottleneck shifts to
internal PCI bus bandwidth for cache-friendly Read
workloads and to the attached disk subsystem for Writes
and very cache-unfriendly workloads. These performance
expectations are common to all SAN appliances, as noted
earlier. The chart below in Figure 12 highlights these
critical considerations. Let’s look at the impact of PCI bus
bandwidth first.

The PC Server used in this testing was equipped with
one 33 MHz 64-bit PCI version 2 bus and two standard
33 MHz 32-bit PCI buses. The server was populated with
9 QLogic 2200 HBAs arranged three deep on each PCI
bus, as illustrated back in Figure 8. The results in Figure
12 summarize a series of tests we performed using
identical workloads, while varying the number of HBAs
(and PCI buses) involved. Results showing both maxi-
mum I/O rates (achieved using 512-byte blocks) and
throughput (using 16 KB blocks) are shown.

In the first test series, the SDS server was set to use
only one FC HBA for Target mode requests — remember,
Target mode refers to SAN client requests to access
SANsymphony virtual disks. This HBA was plugged into
one of the available 32-bit buses, by the way. A second
HBA was enabled to provide connectivity to the Eurologic
FC disk arrays. Because we were not interested in spot-
lighting any disk subsystem performance issues at this
time, we maintained a single FC back-end connection
throughout all tests. We should note that the FC link to
the disks was dormant anyway during this series of tests
because we artificially restricted the workload to fit in the
server’s memory-resident cache. There was almost no need
to access the back-end disks.

This first scenario simulates running the SANsymphony
storage manager software on a low cost Intel server
equipped with a single PCI bus. This basic configuration
reached almost 78 MB/sec throughput using 16 KB
blocks. It reached a maximum I/O rate near 6800 1/Os
per second with 512-byte blocks.

In the second series of tests, we enabled a second HBA
on the first 32-bit PCI bus and added two HBAs that
were plugged into the faster 64-bit slot (for a total of four
front-end interfaces). This scenario simulates running
SANsymphony on a higher-priced dual PCI-bus server.
Note the impact of doubling the PCI bandwidth and the
effect of doubling up on the number of HBAs configured
per bus. Both the I#O rate and maximum throughput
almost tripled to 18,000 I/Os per second and 210 MB/sec
throughput.

In the third scenario, we enabled all eight available
HBAs for SAN client connections, with two configured

on the 64-bit bus and three on both 32-bit buses. At this polling thread, pulling down the productive polling rate to
point the configuration on this high end, triple PCI bus 25% for the remainder of the test. With two polling

PC server was maxed out. The HBA connected to the threads active, SANsymphony boosts CPU utilization to
back-end disks occupied the third slot on the 64-bit bus, 200%. Since the number of active polling threads reaches
while a NIC was installed in the only other available slot three (and CPU utilization remains at 200%), it is evident

on the motherboard. Doubling the number of front-end that the configuration is not CPU-constrained for this
FC connections and utilizing the third PCI slot led to workload.
another doubling of the maximum I/O rate to 40,000 Unfortunately, the PCI bus on Windows 2000 servers
IOPS, which was the CPU-bound scenario we discussed is not instrumented, so we could not measure bus utiliza-
at length above. Maximum throughput of this configura- tion directly. However, based on its known operating
tion also increased, but only to about 270 MB/sec. The characteristics, we can project that the bus configuration
bottleneck in this latter 16 KB scenario is not immediately =~ was saturated during this test. Since the FC HBAs
apparent, but is evidently not the result of insufficient connected to the bus can only transfer data across the bus
server processing power, as we shall see. at a rate of 100 MB/sec, there is a corresponding reduc-
Figure 13 illustrates the adaptive algorithm that tion in the effective bandwidth of the PCI bus to which
SANsymphony uses to dispatch polling threads. At the they are attached. Even the faster 33 MHz eight-byte
beginning of the benchmark run, there is one polling wide version 2.1 PCI bus can only sustain about 90 MB/

thread dispatched. The rate of productive polls is near 0%, sec throughput because the interface cards cannot run any
and the 4-way system idles along at just above 100% total ~ faster. Upgrading to 200 MB/sec FC HBAs cards looks
CPU busy. Notice that the kernel thread is well behaved, like a promising way to reach higher throughput levels.

allowing the OS to schedule it to run on any available However, 200 MB/sec cards can only run at that speed

processor. when plugged into a PCI 2.1 slot. Moving to 200 MB/sec
When the benchmark 16KB 1/0 workload kicks in HBAs also triggers a succession of hardware upgrades to

shortly before 18:01, the productive polling rate rises the SAN clients and to the FC switch that is used to

sharply to 50%. But then SANsymphony releases a second

Front end bandwidth and its impact on performance

Max Read 1/0s Max Write 1/0s —#— Max Read Throughput ——Max Write Throughput

50,000 ; ; ; ; ; ; ; : 300
b | | | | | : | T 150
S 40,000 —--—-- —io=oa=c + dosso—as e o oo=s e vk Gl =
-2 ' ' ' ' ' 1 -
a i i | i i i i g
[| 1 1 1 1 1 1 :
5 e e : e e e . {00
© 30,000 Lo . b fomnme- i e b tomem p
o | | i i i i
g : : : : : : \
g : : : : : : I
& 1 1 1 1 1] i
" E
§ 210,000 - e T A - 3
- ' ' ; 100
-] i i i T i
a ' ' : |
x . : : . 1
£ 10,000 b e S e

o ; ; ; ; ; ; ; I o
o 1 1 3 4 5 & T a ¢
FC HBAs

FiGuRe 12. FRONT END BANDWIDTH AND ITS IMPACT ON SCALABILITY.

SAMaymphany Palling eTectiveness |
CFU Leilization (MT)
OG0 1768 - G501 1204

favorably with the fastest
(and most expensive) FC-
enabled storage processors
available.

Since the SDS software
stack requires only modest
amounts of CPU power,
realistic I/O workloads are
far from compute-bound on
widely available Intel-based
servers. As the benchmarks
results from tests where we
increased the number of FC
interface boards and PCI
buses used in the sample
configuration showed,
SANsymphony perfor-
mance scales in a
predictable manner with the

number of HBAs and the
1R 1 ol 1 Wi 1asm 18 . (L . .
it it internal bus bandwidth of
: the server machine.
: === pmducive pnlkewsc = Fnrn'-i _ pracesnrl
wilobiresed]

[jildEEniE
interconnect them before higher throughput rates can be
attained in any configuration.

Conclusion.

This paper discusses basic capacity planning consider-
ations for popular forms of in-band and out-of-band SAN
data management protocols. We were able to present and
discuss performance data from a series of benchmark tests
designed to clarify configuration and tuning issues involv-
ing SANsymphony Storage Domain Servers, an in-band
SAN storage manager. Because SANsymphony software runs
on standard Intel server hardware running the Microsoft
Windows 2000 operating system, its performance issues are
similar to other Intel server workloads. The availability of
professional quality performance measurement tools for
the Windows 2000 platform, along with the expertise in
knowing how to use them, makes it possible to explore
these performance issues in some detail.

For a typical 16 KB block Read satisfied from SANsymphony
memory-resident cache, we measured a 330 psec device
service time, broken down into three distinct command
processing phases associated with the Fibre Channel serial
protocol. Of the total 330 psecs of elapsed SCSI target
device service time, about half involved transfer of the 16
KB data payload, while the other half was due to process-
ing by the FC interface card and the SDS software stack.
For the 4-way 550 MHz PC used for this series of tests,
SDS software accounted for just 73 psec out of the total
330 usec latency that was recorded. The in-band delay
experienced by SAN clients accessing a virtual disk powered
by a moderate cost SANsymphony appliance compares

References

[1] Brandwajn, Alexandre, “A study of Cached RAID-51/0,”
CMG Proceedings, December, 1994.

[2] McNutt, Bruce, The fractal structure of data reference: applica-
tions to memory hierarchy. Boston: Kluwer Academic
Publishers, 2000.

[3] Chung, et. AL, “Windows 2000 Disk I/O Performance,”
Microsoft Research Technical Report MS-TR-2000-55,

available at ftp://ftp.research.microsoft.com/pub/tr/tr-

2000-55.pdf.
[4] Evio Valdevit, “Cascading in Fibre Channel: how to build a

multi-switch fabric,” Brocade Communications Systems,

available at http://www.brocade.com/SAN/white papers/

pdf/Cascading.pdf.
[5] John Curtis, “In defense of Jumbo Frames,” Network World,

August 10, 1998.

[6] Peterson and Davie, Computer Networks, San Francisco, CA:
Morgan Kaufmann, 1996.

[7] Gibson and van Meter, “Network-attached storage architec-
ture,” Communications of the ACM, November 2000.

[8] Garth Gibson, “A Case for Network-Attached Secure Disks.”
Carnegie-Mellon Technical Report, 1996.

[9] Solomon and Russinovich, Inside Windows 2000, Redmond,
WA: Microsoft Press, 2000.

[10] Friedman and Pentakalos, Windows 2000 Performance Guide,
Boston, MA: O'Reilly Associates, 2001.

[11] Curt Aubley, Tuning and Sizing Windows 2000, Englewood
Cliffs, NJ: Prentice-Hall, 2001.

