Multiprocessor scalability in Microsoft Windows NT/2000

Abstract.

This paper provides an overview of the multiprocessing support in the Microsoft Windows NT/2000 operating system,
with an emphasis on scalability and other capacity planning issues. It also discusses specific features of the Intel P6
architecture that provide the hardware basis for large scale multiprocessing systems. As a shared memory multiprocessing
implementation, Windows NT/2000 is predictably vulnerable to saturation on the shared memory bus. Processor
hardware measurements that can illuminate memory bus contention when it appears are also described and discussed.

Introduction

The specific type of multiprocessing Windows NT/
2000 implements using Intel P6 processors (the Pentium
Pro, Pentium II, and Pentium III models) is generally
classified as shared-memory multiprocessing. In this type
of configuration, the processors operate totally indepen-
dent of each other. But they do share a single copy of the
operating system and they share access to main memory
(i.e., RAM). A typical dual processor shared-memory
configuration is illustrated in Figure 5.1. Notice the
illustration shows two P6 processors, which contain
dedicated Level 2 caches. (They each have separate built-in
Level 1 caches, too.) A two-way configuration, as illustrated,
simply means having twice the hardware — two identical sets
of processors, caches, and internal buses. Similarly, a four-
way configuration means having four of everything. Having
duplicate caches is designed to promote scalability since
cache is so fundamental to the performance of pipelined
processors.

The processors also share a common bus that is

L1 Cache

perspective, you will see multiple instances of the proces-
sor Object reported in both Taskman (as illustrated below
in Figure 2) and Perfmon (see Figure 3).

The specific type of multiprocessor support offered
beginning in Windows NT 4.0 is known as symmetric
multiprocessing, often abbreviated as SMP. Symmetric in
this context means that every thread is eligible to execute
on any processor. Prior to NT 4.0, Windows NT supported
only asymmetric multiprocessing. Interrupts could only be
processed in an NT 3.5x machine on CPU 0. When they
are present, CPUs 1, 2, 3, can only run user and kernel
code, never Interrupt Service Routines (ISRs) and Deferred
Procedure Calls (DPCs). This asymmetry ultimately limits
the scalability of NT 3.5x multiprocessor systems because
the CPU 0 engine is readily overloaded under some
workloads, while the remaining microprocessors are idling.
In an SMP, in theory, all the microprocessors should run
out of capacity at the same time. One of the key Microsoft
development projects associated with the NT 4.0 release

L1 Cache

used to access main memory locations. This,
obviously, is not so scalable. And, according to
experienced hardware designers, this shared
component is precisely where the bottleneck in
shared-memory designs often is.

Operating system support

for multiprocessing. Each L2 Cache
processor in a multiprocessor is T 11
[|

capable of executing work

L2 Cache

independently of the other.

Separate, independent threads

may be dispatched, one per 1[
processor, and run in parallel.
Only one copy of the Windows
2000 operating system is
running, controlling what runs
on all the processors. From a
performance monitoring

VIA' A COMMON SYSTEM BUS.

hared Memory Bus

!

FiGURE 1. A SHARED-MEMORY MULTIPROCESSOR. EACH PROCESSOR IN A MULTIPROCESSOR HAS ACCESS
TO DEDICATED LEVEL 1 CACHE AND LEVEL 2 CACHES. AccESS TO SYSTEM RAM, IN CONTRAST, IS SHARED

EI ywWindows NT Task Manager _[O]
File Options Yiew Help |

Applications 1 Processes | Peromance 1

[CPUUsage CPU Usage History

MEM Usage — i Memone Usage Histony

 Totals

I 1 Physical Memory (K) 1
| Handlas 10813 | | Total 261552 |
Threads 599 | Available 147240 |

| Pracesses 51 | File Cache 18028 |

— Commit Charge (K] Kemel Memary (K)

| Total 199696 | | Total a7z |

| Limit 504384 | | Paged 24544 |
| Peak 211476 | Manpaged 7428 |

Frocesses

[Mem Usage: 190124k / 504354

FIGURE 2. MEASUREMENT SUPPORT FOR MULTIPROCESSORS IN TASK
MANAGER.

was changes to the kernel to support SMPs. In addition, the
Windows NT development team fine-tuned the OS code to
run much better in a multiprocessing environment. Win-
dows 2000 also incorporates further improvements inside
the operating system to boost performance on large n-way
multiprocessor configurations.

Processor Utlization by Processor (MNT)
0812001989 165:00 - OR2 11895 03:00

PEaC el

| - '

iyl TUTLN
W LT ||II i L
gl A

§ i 1
P T TR e T BTN

The symmetric multiprocessing (SMP) support avail-
able in Windows NT 4.0 and above allows any processor
normally to process any interrupt, as illustrated in Figure 3.
This performance data illustrates a two-way symmetric
multiprocessor system running NT 4.0 Server. (Be careful,
the vertical axis scale was adjusted down to a maximum of
thirty to make the chart data easier to decipher.) The two
processor instances of % Privileged Time and % Interrupt
Time Counters are shown. The processing workload is
roughly balanced across both processors, although the load
does bounces back and forth a bit, depending on what
threads happen to be ready to run. As should be evident
from this picture, threads are dispatched independently in
Windows 2000 so that it is possible for a multithreaded
application to run in parallel on separate processors.

Figure 3 shows the amount of CPU time consumed
servicing interrupts on the two processors. The amount of
time spent processing interrupts per processor is roughly
equal, though there is some degree of variation that occurs
naturally. This is not always the most efficient way to
process interrupts. Having one type of ISR or DPC
directed to a single processor can have a positive impact on
performance if the processor that runs the DPC code, for
instance, is likely to be able to cache it, rather than being
forced to fetch it from memory. Similarly, The Win2K
scheduler tries to dispatch a ready thread on the same
processor where it recently ran for that very same reason.
A thread is said to have an affinity for the processor where
it was most recently dispatched. Processor affinity in
Windows 2000 thread scheduling is discussed below.

Processor affinity. Logically, the
structure of the Windows 2000 Thread
Scheduler Ready Queue and the
relative priority of threads waiting to
execute is identical whether Win2K is
executing on an single processor or on
multiple processors. The main differ-
ence is that multiple threads can run
concurrently on a multiprocessor, a
little detail that leads to many compli-
cations. The Win2K Scheduler, in turn,
selects the highest priority waiting
| | thread to run on each available
processor. In addition, certain execu-
tion threads may have an affinity to
execute on specific processors. Win2K

1600 700 80 Wm0 A0 200 200 230 00 a0 0Q0g oA

supports both hard affinity, where a

privele gedpanceserk
A R O CE A E

FIGURE 3. SYMMETRIC MULTIPROCESSING IN WiNDows 2000 AND
NT 4. OPERATING SYSTEM PRIVILEGED THREADS AND INTERRUPT
SeRrVICE RouTINES (ISRS) ARE ELIGIBLE TO BE DISPATCHED ON ANY
AVAILABLE PROCESSOR.

privilegedpancessen]
-!llql"ll’ll_'Fﬁll'l

given thread is eligible to run only on
specific processors, and soft affinity,
where Win2K favors scheduling
specific threads on specific processors,
usually for performance reasons.

Hard affinity is specified at the process and thread level
using a processor affinity mask. The Win32 API calls to

accomplish this are straightforward. First, a Thread issues
a GetProcessAffinityMask call referencing a process
handle, which returns a 32-bit SystemAffinityMask. Each
bit in the SystemAffinityMask represents a configured
processor. Then, the Thread calls SetProcessAffinityMask
with a corresponding 32-bit affinity mask that indicates
which processors Threads from the process can be dis-
patched on. Figure 4, which illustrates the use of this
function in Taskman, allows you to set a process’s affinity
mask dynamically, subject to the usual security restrictions
that allow Taskman to operate only on foreground-eligible
processes by default. There is a corresponding call to
SetThreadAffinityMask override the process settings for
specific threads. Once hard affinity is set, threads are only
eligible to be dispatched on specific processors.

Suppose that following an interrupt an application
program thread becomes Ready to run and there are
multiple processors that are idle. First, Win2K must chose
among available processors to select the processor for a
Ready thread to run on. This decision is based on perfor-
mance. If the thread was previously dispatched within the
last Scheduler quantum (or timeslice), Win2K attempts to
schedule the thread on that processor, so long as the
current thread has a higher priority than the thread that is
already running there. This is known as soft affinity. If the
desired processor is currently busy with a higher priority
task, Win2K is willing to schedule the waiting thread on a
different processor. By scheduling the thread back on the
same processor where it ran last, Win2K hopes that a good
deal of the thread’s code and data from the previous
execution interval are still present in that processor’s
cache. The difference in instruction execution rate between
a cache “cold start” when a thread is forced to fault its way
through its frequently accessed code and data and a “warm
start” when the cache is preloaded can be substantial.

Shared-memory
multiprocessor scalability

Shared-memory multiprocessors running SMP operating
systems are the most common breed of multiprocessor. A
great deal is known about hardware performance in this
context. Any multithreaded application will likely benefit
from having a choice of processors to run on — where any
thread can run on any available processor in an SMP. Even
single threaded applications may benefit, since multiple
applications can run in parallel. Because a dual processor
system running Windows 2000 can dispatch two threads at
a time, not just one, it seems reasonable to assume the dual
processor configuration is twice as powerful as having a
single engine to do the work. To see why this isn’t exactly
so, we will need to investigate a few aspects of shared-
memory multiprocessor scalability.

Shared-memory multiprocessors have some well known
scalability limitations. They seldom provide perfect linear

T Mrauezzw &0 e sshquanraz o idl e i aaie sz =il g
aloese Iz arzanle o
bl T
W e
- UFLN

[B W LAl

¥
L e - |

r r
r I
r r
I r
[r)e el RS e e
I I
=0T, r
I FT [ot I

FIGURE 4. SETTING A PROCESS’S PROCESSOR AFFINITY MASK USING
TASKMAN.

scalability. Each time you add a processor to the system,
you do get a corresponding boost in overall performance,
but with each additional processor the boost you get tends
to diminish. It is also possible to reach a point of diminish-
ing returns where adding another processor actually
reduces overall capacity. In this section we discuss several
fundamental issues that impact multiprocessing scalability,
including:

. the overhead of multiprocessor synchronization,

. multiprocessor-related pipeline stalls that are caused
by cache coherence conflicts, and

. cycles wasted by code executing spin locks.

Understanding these sources of performance degradation in
a shared-memory multiprocessor will help us in examining
and interpreting the extensive processor utilization
measurements that are available in Windows NT/2000.

One thing to be careful about is that the processors in an
SMP may look very busy, but if you are able to look inside
the processor, you may find they are not performing as
much productive work. The way to look inside is to use the
Pentium Counters [1]. On a simple, single engine system,
Instructions retired/sec, the internal P6 measure of Instruc-
tion Execution Rate (IER), generally tracks processor %
Processor Time very well. Scalability issues mean that
internal IER and external processor busy measures can no
longer be expected to correspond in predictable ways for
more complicated multiprocessors.

Figure 5, taken from a two-way multiprocessor, illus-
trates this essential point. Figure Sa shows the Task
Manager histogram of processor utilization on this ma-
chine. Notice that both engines are running at near 100%
utilization. This configuration contains two 200 MHz
Pentium Pro machines. Remember, on a uniprocessor a
good Rule of Thumb is to expect performance at or near 2
Cycles per instruction (CPI). This translates into capacity
of about 100,000,000 instructions per second on a 200
MHz P6. Figure 5b shows actual measurements for one of
these engines at only 12,345,000 instructions per second.

E1 Windows NT Task Manager
File Options Yiew Help

- [O[x] %86 Perf Meter

le Select

Applications ‘ Processes __Pfrfnrman_i:e“ l

What happens when you

Thunk Disp add a third, fourth, or even

CPU Usage

more processors? The best
models of shared memory
multiprocessor performance

suggest that the machines get

ItRescvuxce related stalls

146819EK :
progressively even less

[MEM Usage

emory Usage History

190 124

efficient as you add more
processors to the shared bus.
However, with proper care
and feeding, multiprocessor

Totals Physical Memary (K} llnstructn:ms retived

1233K 11 configurations with quite

Handles 10613 | Total 261562

Threacls
Processes

599
51

147240
18028 |

Available
File Cache

Commit Charge (1€)
Total

Lirnit

Peak

Kernel Mernony (K)——————

Total 31972 |
| Paged 24544

Nanpaged 7428

199696
504384
211476

good scalability can be
configured, although this
requires a fair amount of skill
and effort.

I
I p

165 Microsoft reported at a

Processes: b1 |CPU Usage: 100% [Mam Usage: 190124k / 504384K

FiGURE 5. MULTIPROCESSOR SCALABILITY ISSUES FORCE YOU TO LOOK INSIDE THE PROCESSOR AT INTERNAL
MEASURES OF EXECUTION RATE BECAUSE IT MAY NO LONGER CORRESPOND TO EXTERNAL PROCESSOR BUSY
MEASUREMENTS. AT LEFT IS A TASK MANAGER HISTOGRAM OF PROCESSOR UTILIZATION SHOWING THAT BOTH
ENGINES ARE RUNNING AT NEAR 100% UTILIZATION. THIS CONFIGURATION CONTAINS Two 200 MHz PeNTIUM

PRO MACHINES. FIGURE 5.B AT RIGHT SHOWS P6 MEASUREMENTS FOR ONE
ONLY 12,345,000 INSTRUCTIONS PER SECOND, OR A CPI oF ABouT 16.7.

UNIPROCESSOR WAS ABOUT 2.0.) OVER 146 MILLION RESOURCE-RELATED STALLS ARE BEING MEASURED

CONCURRENTLY.

This machine is delivering only about 12% of its rated
performance — notice over 146 million resource-related
stalls, too. Making sure that an expensive 4 or 8-way
multiprocessor Server configuration that you purchased is
performing up to its capacity is not a trivial affair.

Speed-up factors. When we talk about scalability in
the context of either multiprocessors or parallel processors,
we are referring to our basic desire to harness the power of
more than one processor to solve a common problem. The
goal of a dual processor design is to apply double the CPU
horsepower to a single problem and solve it in one half the
time. The goal of a quad processor is to apply quadruple
the processing power and solve problems in one quarter the
time. You get the idea. The term speed-up factor refers to
our expectation that a multiprocessor design will improve
the amount of time it takes to process some workload. If a
multiprocessing design supported a speed-up factor of 1,
then two processors would provide fully twice the power of
a single engine. This would be perfect linear scalability,
something shared-memory multiprocessors are just not
capable of. A reasonable expectation is for a speed up
factor in the range of about 0.85. This means that two Intel
processors tied together would only be able to function at
about 85% efficiency. Together, the two would provide 1.7
times the power of standalone processor. An improvement,
but certainly a more marginal and less cost-effective one. It
turns out that Windows NT running on Intel hardware
provides MP scalability in that range.

presentation at CMG 1996
that the symmetric multipro-
cessing support built for
Windows NT version 4.0, in
fact, sported a speed-up
factor of 0.85. Figure 6
compares the theoretical
prospects for linear speed-up
in a multiprocessor design to
the actual (projected) scalability of Windows NT version
4.0, based on the actual measurements reported by
Microsoft. The projection used here is a guess, of course,
and your mileage may vary, but it is based on the formula
Gunther [2] recommends for predicting multiprocessor
scalability. Actual performance is very workload-depen-
dent, as we will discuss below. Figure 6 illustrates that
actual performance of a multiprocessor running Windows
NT falls far short of the ideal linear speed-up. In fact,
beyond four multiprocessors, the projection is that adding
more engines hardly boosts performance at all. Many
published benchmark results of Windows NT multiproces-
sors evidence similar behavior, as in, for example, Figure
7, benchmark results that Intel published on its web site in
1998. (Look carefully — the results depict measurements
of 1, 2and 4-way systems.) Results such as these suggest
that the theoretical model has at least some underlying
validity.

Notice that after a certain point (> 12 processors),
adding additional engines actually degrades overall
performance, according to the theoretical model. It is
worth noting that Windows NT 4.0 multiprocessor
scalability is rather typical of general-purpose operating
systems — no worse, no better. MVS, IBM’s flagship
multiprocessing operating system, achieved a similar 0.85
scalability up until it was re-architected for massively-
parallel processing. To achieve anywhere near linear
scalability requires highly engineered, special purpose

OF THESE ENGINES RUNNING AT
(A Goob TARGET CPI on A

Windows 2000 SMP Scalability

16 : ‘
[N [

- NT 4.0 [[
=i~ Ideal

Serializing instructions. The
first noticeable multiprocessor
effect is the performance
impact of serializing LOCKed
instructions. Instructions coded

12 3 Win2K?

Win2K??

Relative Performance

with the LOCK prefix are
guaranteed to run uninterrupted
and gain exclusive access to the
designated memory locations.
Locking the shared-memory
bus delays any threads execut-
ing on other processors that
need access to memory. There
are, in addition, a number of
hardware-oriented operations
that are performed by the
operating system that implicitly
serialize by locking the shared-

o

of Processors

FIGURE 6. THEORETICAL LINEAR SCALABILITY OF A MULTIPROCESSOR COMPARED TO ACTUAL PROJECTED
SCALABILITY oF Winpows NT 4.0, BASED ON MEASUREMENTS TAKEN AND REPORTED BY MICROSOFT IN
1996. THE PROJECTION USES A FORMULA RECOMMENDED BY GUNTHER [1], BUT IS CONSISTENT WITH A
NUMBER OF PUBLISHED BENCHMARKING RESULTS. FOR INSTANCE, SEE THE ARTICLE ON 8-WAY SCALABILITY IN
THE SEPTEMBER 1998 WiNDows NT MAGAZINE AT HTTP://WINNTMAG.COM/MAGAZINE/
ARrTICcLE.CFM?IsSUEID=58&ARTICLEID=3781. WiNbows 2000 INCORPORATES FURTHER
MULTIPROCESSOR SCALABILITY ENHANCEMENTS, BUT IT IS NOT YET CLEAR JUST HOW MUCH MORE SCALABLE

WiN2K 1s.

parallel processing hardware and complementary operating
system services to match.

Windows 2000 incorporates some further enhancements
designed to improve multiprocessor scalability. Microsoft
implemented a new HAL function called queued spin locks
that exploits a new Intel instruction on the
Pentium III. It is not clear just how much this
new function will help on large scale 8 and 16-
way machines. Figure 6 suggests two

possibilities, reflecting a relatively marginal 10000

increase in multiprocessor scalability to 0.90 or

possibly even to 0.95. 8000
To summarize this discussion so far, it is &

. . . = 6000
simply not possible to string processor after 3
processor together and double, triple, quadruple, = 4000
etc., the amount of total processing power
available. The principal obstacle of shared- 2000
memory multiprocessor designs, which are quite
simple from the standpoint of the programmer, is 0

that they typically encounter a bottleneck in

accessing shared-memory locations using the

shared system memory bus. To understand the nature of
this bottleneck, let’s proceed to a discussion of the sources
of performance degradation in a multiprocessor.

w memory bus on an Intel
shared-memory multiprocessor.
These include setting the active
Task State Segment (TSS),
which is performed during a
context switch of any type.
Intel hardware also automati-
cally serializes updates of the
Page Directory Entries and
Page Table Entries that are
used in translating virtual
memory addresses to real
memory locations. (This
impacts the page replacement algorithm that Win2K uses
on Intel multiprocessors, as discused in [3].)

Intel documentation [4] describes some specific
serializing instructions that force the processor executing

Pentium® 11 Xeon™ Processor
Cache Scaling (ServerBench™)

Source: Intel Intermal Measurements

- 1p 1770
. Mer 1494 __..fi'o""‘-'
| Bl

450/1 MB

450/2 MB

FIGURE 7. MULTIPROCESSING BENCHMARK RESULTS PUBLISHED BY
INTEL IN 1998. LOOK CAREFULLY — THE RESULTS DEPICT
MEASUREMENTS OF 1, 2AND 4-WAY SYSTEMS, COMPARING SIMILARLY
CONFIGURED SYSTEMS WITH 1 AND 2 MB OF LEVEL 2 CACHE.

these instructions to drain the pipeline before executing the
instruction. Following execution of the serializing instruc-
tion, the pipeline is started up again. These serializing
instructions include privileged operations that move values
into internal Control and Debug Register, for example.
Serializing instructions have the effect on the P6 of forcing
the processor to re-execute out of order instructions, for
example.

The performance impact of draining the instruction
execution pipeline ought to be obvious. Current generation
P5 and P6 Intel processors are pipelined, superscalar
architectures. The performance impact of executing an
instruction serialized with the LOCK prefix includes
potentially stalling the pipelines of other processors
executing instructions until the instruction that requires
serialization frees up the shared-memory bus. This can be a
fairly substantial performance hit, too, which is solely a
consequence of running in a multiprocessor environment.
The cost of both sorts of instruction serialization contribute
to at least some of the less than linear scalability that we
can expect in a multiprocessor. How much is very difficult
to quantify, and certainly workload dependent. There is
also very little one can do about this source of degradation.
Without serializing instructions, multiple processors would
simply not work reliably.

A second source of multiprocessor interference is
interprocessor signaling instructions. These are instruc-
tions issued on one processor to signal another processor,
for example, to wake it up to process a pending interrupt.
By its very nature, interprocessor signaling is quite
expensive, in performance terms.

Cache effects. Effective on-board CPU caching is
critical to the performance of pipelined processors[5]. Intel
waited to introduce pipelining with its 486 chips until there
was enough real estate available to include an on-board
cache. It should not be a big surprise to learn that one
secondary effect of multiprocessor coordination and
serialization is that it makes caching less effective. This, in
turn, serves to slow down the processor’s instruction
execution rate. In order to understand why SMPs impact
cache effectiveness, we will take a detour into the realm of
cache coherence in the next section. From a configuration
and tuning perspective, one intended effect of setting up an
application to run with processor affinity is to improve
cache effectiveness and increase the instruction execution
rate. Direct measurements of both instruction execution
rate and caching efficiency, fortunately, are available via
the Pentium Counters. Unfortunately, the Pentium Counter
support Microsoft provides in the NT 4.0 Resource Kit
falls short of the precision tool that MP configurations
require. Moreover, Microsoft no longer provides a means
to gather Pentium statistics in Windows 2000.

Spin locks. If two threads are attempting to access the
same serializable resource, one thread will acquire the
lock, which then blocks the other one until the lock is
released. A block of code guarded by some synchroniza-
tion or locking structure is called a critical section. (The
generic name should not be confused with the Win32 API
function which provides platform independent locking
services for critical sections.) Problem: what should the
thread that is blocked waiting on a critical section do while
it is waiting? An application program in Windows 2000 is
expected to use Win32 serialization runtime services that
puts the application to sleep until notified that the lock is
available. Win32 serialization services arrange multiple
threads waiting on a shared resource in a FIFO queue so
that the queueing discipline is fair. This suggests that a key
element of designing an application to run well on a
shared-memory multiprocessor is to minimize the amount
of processing time spent inside critical sections. The
shorter the time spent executing inside a locked critical
section of code, the less time other threads are blocked
waiting to enter it. Much of the re-engineering work
Microsoft did on NT 4.0 and again in Windows 2000 was
to redesign the critical sections internal to the OS to
minimize the amount of time kernel threads would have to
wait for shared resources.

When critical sections are designed appropriately, then
threads waiting on a locked critical section should not have
long to wait. Furthermore, while a thread is waiting on a
lock, there may be nothing else for it do. For example, a
thread waiting on the Win2K Scheduler lock can perform
no useful work until it has successfully acquired that lock.
For example, consider a kernel or device driver with OSD
privileges that is blocked waiting on a lock. The resource
the thread is waiting for is required before any other useful
work on the processor can be performed. The wait can be
expected to be of very short duration. Under these circum-
stances, the best thing to do may be to loop back and test
for the availability of the lock again. Code that tests for
availability of a lock that finally enters a critical section
and sets the lock using a serializing instruction. If the same
code finds the lock is already set (presumably by a thread
running on a different processor), there is nothing to do on
a shared memory multiprocessor other than retry the lock
again. The entry code simply branches back to retest the
lock. This coding technique is known as a spin lock. If you
are able to watch this code’s execution, it appears to be
stuck in a very tight loop of just a few instructions — until
the lock requested is finally available.

Spin locks are used in many, many different places
throughout the operating system in Windows 2000 because
operating system code waiting for a critical section to be
unlocked often has nothing better to do during what is,
hopefully, a very short waiting period than retest the lock.
For example, device drivers are required to use spin locks
to protect data structures if there is any possibility that

spin lock function to protect critical sections of code.
Consider a 2, 4 or 8-way multiprocessor with an ntfs

file system. ntfs.sys functions can be executed on any
processor where there is an executing thread that needs
access to disk files. In fact, it is likely that ntfs
functions will execute concurrently (on more than one
processor) from time to time. ntfs.sys uses HAL spin
lock functions to protect critical sections of code,

preserving the integrity of the file system in a multi-
processor environment.

Spin lock code is effectively dormant when it is run
on a single processor system, but consumes a signifi-
cant number of processor cycles on a multiprocessor.
Again, the use of spin locks is, to a large degree,
unavoidable. The performance implication of spin locks
is that processor utilization increases, but no useful

File Select Thunk Disp
EfhequireSpinLock(ntfs=hal) 73 | [FfReleaseSpinLock(ntfs=hal) 72
[Ens all transactions SO0K | [Bus waitehack transactions 44K

work is actually being performed. Here’s where simple

measures of processor utilization are misleading.

FiGURE 8. THE THUNK FUNCTION IN THE X86 PERF METER
APPLICATION IN THE RESOURCE KIT CAN BE USED TO MONITOR SPIN
LOCK ACTIVITY. IN THIS EXAMPLE, THE NTFS.SYS FILE SYSTEM DRIVER
MODULE IS CALLING INTO HAL.DLL (THE TARGET MODULE). THE
KFAcQUIRESPINLock AND KFRELEASESPINLock HAL FUNCTIONS
ARE BEING MONITORED. NTFS FILE SYSTEM REQUESTS THAT MODIFY
FILE SYSTEM USE HAL SPIN LOCKS FUNCTIONS TO PROTECT CRITICAL
SECTIONS OF CODE.

multiple threads could be active consurrently on a symmet-
ric multiprocessor where device interrupts are eligible to
be processed on any processor. Windows 2000 provides a
standard set of spin lock services for Device Drivers to use
in Interrupt Service Routines and kernels threads outside of
ISRs. (See the DDK documentation on
KelnitializeSpinLock, loAcaquireCancelSpinLock, and
related services for more detail on these services.) These
standard services allow Device Drivers written in C
language to be portable across versions of Windows NT
running on different hardware.

Win2K client applications care about throughput and
response time, which may be degraded on a multiprocessor
even as measurements of CPU utilization look rosy.

The combined impact of serializing instructions,
interprocessor signaling, diminished cache effectiveness,
and the consumption of processor cycles by spin lock code
serve to limit the scalability of shared-memory multipro-
cessors in Windows 2000 and other operating systems.
Furthermore, each additional processor that is added to the
configuration amplifies these multiprocessor scalability
factors. These scalability factors make sizing, configuring,
and tuning large scale n-way Win2K multiprocessors a
very tricky business. Just how tricky should become more
apparent after a consideration of the cache coherence
problem in the next section.

Cache coherence

In Windows NT version 4.0, CPUO CPU 1
you can use the Thunk function Thread O L1 Cache L1 Cache Thread 1
; f ot unlock: xchg EAX,meml [®.®_ ©_© p 0.0 .0 0| spinlock: xchg EAX,meml
in the x86 Perf Mc?ter application »’e’o:o:e QO Q: ’: ~ on. EAX. zoro
in the Resource Kit (pperf.exe — »:1 ;o‘o‘o >:< ;o X jne spinlock
the same application used to 0%0%0%0° 0%0%0%0°
access the Pentium Counters) to L2 Cache A M) cache
witness spin lock activity. For EEEEEEEN| J £

mem, qE»

example, from the Thunk menu,

select the ntfs.sys file system
driver module, using hal.dll as
the target module. Then select

the KfAcquireSpinLock and
KfReleaseSpinLock for monitor-
ing, as illustrated in Figure 8. If
you then generate some ntfs file
system requests, like emptying
the Recycle bin, you will observe
ntfs driver code using the HAL

FIGURE 9. TWO THREADS OPERATING ON THE SAME MEMORY LOCATION CONCURRENTLY LEAD TO
PROBLEMS MAINTAINING THE COHERENCE OF INFORMATION STORED IN LOCAL PROCESSOR CACHES. IN THIS
EXAMPLE, THREAD 0 EXECUTING ON CPU 0 IS ABOUT TO RESET A LOCK WORD AT LOCATION MEM, ,
RESIDENT IN ITS LEVEL 2 cACHE. MEANWHILE, THREAD 1 EXECUTING ON CPU 1 IS ATTEMPTING TO SET
THE SAME LOCK WORD AT LOCATION MEM, TO ENTER THE CRITICAL SECTION THREAD 0 IS ABOUT TO EXIT.
How THE UPDATE TO AT LOCATION MEM, PERFORMED IN LOCAL CACHE ON CPU 0 IS PROPAGATED TO
CPU 1 I AN EXAMPLE OF THE CACHE COHERENCE PROBLEM.

The cache effects of running on a shared-memory
multiprocessor are probably the most salient of the factors
limiting the scalability of this type of computer architec-
ture. The various forms of processor cache, including
Translation Lookaside Buffers (TLBs), code and data
caches, and branch prediction tables, all play a critical role
in the performance of pipelined machines like the Pentium,
Pentium Pro, Pentium II, and Pentium III. For the sake of
performance, in a multiprocessor configuration each CPU
retains its own private cache memory, as depicted in Figure
9. We have seen that multiple threads executing inside the
Win2K kernel or running device driver code concurrently
can attempt to access the same memory locations. Propa-
gating changes to the contents of memory locations cached
locally to other engines that may have their own copies of
the same memory is a major issue in designing multipro-
cessors to operate correctly. This is also known as the
cache coherence problem in shared-memory multiproces-
sors. Cache coherence issues also have significant
performance ramifications.

Maintaining cache coherence in a shared-memory
multiprocessor is absolutely necessary in order for pro-
grams to execute correctly. While, for the most part,
independent program execution threads operate indepen-
dently of each other, sometimes they must interact.
Whenever they Read and Write common or shared-
memory data structures, threads must communicate and
coordinate accesses to these memory locations. This
necessary coordination inevitably has performance
consequences. We will illustrate this side effect by drawing
on an example where two kernel threads are attempting to
gain access to the Win2K Scheduler Ready Queue simulta-
neously. As indicated earlier, a global data structure like
the Ready Queue that is subject to access from multiple
threads executing concurrently on different processors
must be protected by a lock. Let’s look at how a lock word
value set by one thread on one processor is propagated to
cache memory in another processor where another thread is
attempting to gain access to the same critical section.

In Figure 9, Thread 0 running on CPU 0 that has just
finished updating the Win2K Scheduler Ready Queue, for
example, is about to exit a critical section. Upon exiting
the critical section of code, Thread O resets the lock word
at location mem, using a serializing instruction like
XCHG. Instead of locking the bus during the execution of
the XCHG instruction, the Intel P6 operates instead only
on the cache line that contains mem,. This is to boost
performance. The locked memory fetch and store that the
instruction otherwise requires would stall the CPU 0
pipeline. In the Intel Architecture, if the operand of a
serializing instruction like XCHG is resident in processor
cache in a multiprocessor configuration, then the P6 does
not lock the shared-memory bus. This is a form of deferred
write-back caching, which is very efficient. Not only does
the processor cache hardware use this approach to caching

frequently accessed instructions and data, but we will see
that so do Win2K systems software and hardware cached
disk controllers, for example.

In the interest of program correctness, updates made to
private cache, which are deferred, ultimately must be
applied to the appropriate shared-memory locations before
any threads running on other processors attempt to access
the same information. Moreover, as Figure 9 illustrates,
there is an additional data integrity exposure because
another CPU can (and frequently does) have the same
meml location resident in cache. The diagram illustrates a
second thread that is in a spin loop trying to enter the same
critical section. This code continuously tests the contents
of the lock word at mem, until it is successful. For the sake
of performance, the XCHG instruction running on CPU 1
also operates only on the cache line that contains mem,
and does not attempt to lock the bus, each time, because
that would stall each processor’s instruction execution
pipeline. We can see that unless there is some way to let
CPU 1 know that code running on CPU 0 has changed the
contents of mem , the code on CPU 1 will spin in this loop
forever. The Intel P6 processors solve this problem in
maintaining cache coherence using a method convention-
ally called snooping.

Intel MESI snooping protocol. Snooping protocols to
maintain cache coherence have each processor listening to
the shared-memory bus for changes in the status of cache
resident addresses that other processors happen to be
operating on concurrently. Snooping requires that proces-
sors place the memory addresses of any shared cache lines
being updated on the memory bus. All processors listen on
the memory bus for memory references made by other
processors that affect memory locations that are resident in
their private cache. Thus, the term snooping. The term
snooping also has the connotation that this method for
keeping every processor’s private cache memory synchro-
nized can be performed in the background (which it is)
without a major performance hit (which is true, but only up
to a point). In practice, maintaining cache coherence is a
complex process that can interfere substantially with
normal pipelined instruction execution and generates some
serious scalability issues.

Let’s illustrate how the Intel snooping protocol works,
continuing with our Ready Queue lock word example. CPU
1, snooping on the bus, recognizes that the update to the
mem, address performed by CPU 0 invalidates its cache
line containing mem,. Then, because the cache line
containing mem, is marked invalid, CPU 1 is forced to
refetch mem, from memory the very next time it attempts
to execute the XCHG instruction inside the spin lock code.
Of course, at this point CPU 0 has still not yet updated
mem, in memory. But CPU 0, also snooping on the shared-
memory bus, discovers that CPU 1 is attempting to read
the current value of mem, from memory, CPU 0 intercepts

and delays the request. Then CPU 0 writes the cache line
containing mem, back to memory. Then, and only then, is
CPU 1 allowed to continue refreshing the corresponding
line in its private cache and updating it.

The cache coherence protocol used in the Intel Archi-
tecture is denoted MESI, which corresponds to the four
states of each line in processor cache: modified, exclusive,
shared, or invalid. The MESI protocol very rigidly defines
what actions each processor in a multiprocessor configura-
tion must take based on the state of a line of cache and the
attempt by another processor to act on the same data. The
scenario described above illustrates just one set of circum-
stances that the MESI protocol is designed to handle. Let’s
review this example using the Intel MESI terminology.

An invalid line that must be
refreshed from memory

Invalid

Valid line, unmodified,
guaranteed that this line only
exists in this cache

Exclusive

Valid line, unmodified, line also
exists in at least one other
cache

Shared

Valid line, modified, guaranteed
that this line only exists in this
cache, the corresponding
memory line is stale

Modified

TasLE 1. THE MESI CACHE COHERENCE PROTOCOL USED IN THE
INTEL ARCHITECTURE. MESI REFERS TO THE FOUR STATES THAT A
LINE OF CACHE CAN BE IN: MODIFIED, EXCLUSIVE, SHARED, OR
INVALID. AT ANY ONE TIME, A LINE IN CACHE IS IN ONE AND ONLY ONE
OF THESE FOUR STATES.

Suppose that Thread 1 running in a spin lock on CPU 1
starts by testing the lock word at location mem,. The 32
bytes containing this memory location are brought into the
cache. This line of cache is flagged exclusive because it is
currently contained only in CPU 1 cache. Meanwhile,
when CPU 0 executes the first part of the XCHG instruc-
tion on mem, designed to reset the lock, the 32 bytes
containing this memory location are brought into the CPU
0 cache. CPU 1, snooping on the bus, detects CPU 0’s
interest in a line of cache that is currently marked exclusive
and transitions this line from exclusive to shared. CPU 1
signals CPU 0 that it too has this line of memory in cache
so that CPU 0 marks the line shared, too. The second part
of the XCHG instruction updates mem, in CPU 0 cache.
The cache line resident in CPU 0 transitions from shared
to modified as a result. Meanwhile CPU 1, snooping on the
bus, flags its corresponding cache line as invalid, as
described above. Subsequent execution of the XCHG
instruction within the original spin lock code executing on
CPU 1 to acquire the lock finds the cache line invalid.
CPU 1 then attempts to refresh the cache line from

memory, locking the bus in the process to ensure coherent
execution of all programs. CPU 0, snooping on the bus,
blocks the memory fetch by CPU 1 because the state of
that memory in CPU 0 cache is modified. CPU 0 then
writes the contents of this line of cache back to memory,
reflecting the current data in CPU 0’s cache. At this point,
CPU 1’s request to refresh cache memory is honored, and
the now current 32 bytes containing mem, are brought into
CPU 1 cache. At the end of this sequence, both CPU 0 and
CPU 1 have valid data in cache, with both lines in the
shared state.

The MESI protocol ensures that cache memory in the
various independently executing processors is consistent
no matter what the other processors are doing. Clearly,
what is happening in one processor can interfere with the
instruction execution stream running on the other. With
multiple threads accessing shared-memory locations, there
is no avoiding this. These operations on shared-memory
stall the pipelines of the processors affected. For example,
when CPU 0 snoops on the bus and finds another processor
is attempting to fetch a line of cache from memory that is
resident in its private cache in a modified state, then
whatever instructions CPU 0 is attempting to execute in its
pipeline are suspended. Writing back modified data from
cache to memory takes precedence because another
processor is waiting. Similarly, CPU 1 running its spin lock
code must update the state of that shared line of cache
when CPU 0 resets the lock word. Once the line of cache
containing the lock word is marked invalid on CPU 1, the
serializing instruction issued on CPU 1 stalls the pipeline
because cache must be refreshed from memory. The
pipeline is stalled until CPU 0 can update memory and
allow the memory fetch operation to proceed.

Memory bus contention. One not so obvious perfor-
mance implication of snooping protocols is that they utilize
the shared-memory bus heavily. Every time an instruction
executing on one processor needs to fetch a new value
from memory or update an existing one, it must place the
designated memory address on the shared bus. The bus
itself is a resource which must be shared. With more and
more processors executing, the bus tends to get quite busy.
When the bus is in use, other processors must wait.
Utilization of the shared-memory bus is likely to be the
most serious bottleneck impacting scalability in multipro-
cessor configurations of three, four, or more processing
engines.

The measurement facility in the Intel P6 or Pentium Pro
processors (including Pentium II and Pentium III proces-
sors) was strengthened to help hardware designers cope
with the demands of more complicated multiprocessor
designs. By installing the Pentium Counter support
provided in the Windows NT 4.0 Resource Kit, system
administrators and performance analysts can access these
hardware measurements, as discussed last chapter. (This

facility does not work under Windows 2000 and was
removed from the Windows 2000 Resource Kit.) While
these Counters are given the cautionary rating of Wizard
within Perfmon, we hope that the discussion above on
multiprocessor design and performance will give you the
confidence to start using them to help diagnose specific
performance problems associated with large scale Win2K
multiprocessors. The P6 Counters provide valuable insight
into multiprocessor performance, including direct measure-
ment of the processor instruction rate, level 2 cache, TLB,
branch prediction, and the all important shared-memory
bus.

The P6 measurements that can often shed the most light
on multiprocessor performance are the shared-memory bus
measurements. Appendix A lists the various P6 bus
measurement counters, using the Microsoft counter names
from Counters.hlp [5]. Many of the counter names and
their unilluminating Explain text are very arcane and
esoteric. For example, to understand what Bus DRDY
asserted clocks/second means might send us scurrying in
vain to the Intel Architecture manuals for help, where,
unfortunately, not much help can be had. A second
observation, which is triggered by the experience viewing
the counters under controlled conditions, is that some of
them probably do not mean what they appear to. For
example, the Bus LOCK asserted clocks/sec counter
consistently appears to be zero on both uniprocessor and
multiprocessor configurations. Not much help there. The
shared-memory bus is driven at the processor clock rate,

B =0C Porf Mctar

_____ e
Fu el —areesi=iu LI
’ |
1 1 1
. '
" 10
DL nrarer Ipaa - e Cluld El:l:l:'i.l

and some counter names use the term cycles and others use
the term clocks. The two terms appear to be interchange-
able. Although not explicitly indicated, some counters that
mention neither clocks nor cycles are also measured in
clocks. For example, an especially useful measure is Bus
requests outstanding, which measures the total number of
clocks the bus is busy.

Bus memory transactions and Bus all transactions
measure the number of bus requests. One thing about the
bus measurements is that they are not processor-specific
since the memory bus is a shared component. The memory
bus that the processors share is a single resource, subject to
the usual queuing delays. We will derive a measure of bus
queuing delay in a moment.

Now, let’s look at some more P6 measurement data
from a multiprocessor system. A good place to start is with
Bus all transactions/sec, which, as noted above, is the total
number of bus requests. Figure 10 shows that when the bus
is busy, it usually is busy due to memory accesses. Bus
memory transactions/sec represent over 99% of all bus
transactions. The measurement data is consistent with the
discussion above suggesting that bus utilization is often the
bottleneck in shared-memory multiprocessors that utilize
snooping protocols to maintain cache coherence. Every
time any processor attempts to access main memory, it
must first gain access to the shared bus.

% wRRE Prrf Mdier
T-urk [i

M E3

Ti= Geack

J iﬁ%f‘ru IS L'J w

H"l R LTt S P 1 =14

i'r' |I ‘II I
"'wl-llll.r\ "."-ﬂlH hv -\.l""'. - II'.'I'L.--_- L .-‘.Ih-l '\"l‘.-

[o s

Fi"l sre ik] ikemd e e

FiGURE 10. MEMORY ACCESSES DRIVE BUS UTILIZATION. MEMORY
TRANSACTIONS REPRESENT OVER 99% OF ALL BUS TRANSACTIONS IN
THIS EXAMPLE, WHICH IS TYPICAL OF BOTH UNIPROCESSORS AND
MULTIPROCESSORS. THE SHARED BUS CAN EASILY BECOME A
BOTTLENECK ON A MULTIPROCESSOR.

Ficure 11. Bus SNOOP STALLED CYCLES/SEC PROVIDES A DIRECT
MEASURE OF MULTIPROCESSOR SHARED-MEMORY CONTENTION. IN
THIS EXAMPLE FROM A TWO-WAY MULTIPROCESSOR, THE NUMBER OF
STALLS DUE TO SNOOPING IS RELATIVELY SMALL COMPARED TO ALL
RESOURCE STALLS.

Ba'1'stineica Henler

B s o A Hoo
e 2 [O A)
na

H 4 |

i ol
o j'.'.‘h...- "\.M*‘\JJ

o b A CPoced B Broez ke HEe| o we_sdz fesph Tes [T THT]
[T [T Erade Cusndan hirdeanu: Fanl Dy, Compuaksi
e WM R -, aaneaas - F -an [y

Sz uend gl -3

FicURe 12. TRACKING P6 BUS MEASUREMENTS ON A UNIPROCESSOR
USING PERFORMANCE MONITOR.

necessary to maintain cache coher-
ence. In this regard, both the rate of
Level 2 cache misses and the number
of write-back memory transactions is
relevant because both actions drive
bus utilization. The P6 Level 2 cache
performance measurements are
especially useful in this context for
evaluating different processor configu-
rations from Intel and other vendors
that have different amounts of Level 2
cache. By accessing this measurement
data, you can assess the benefits of
different configuration options
directly. This is always a better
method than relying on some Rule of
Thumb value proposed by this or that
performance expert, perhaps based on
a measurement taken running a
benchmark workload that does not
reflect your workload.

Another Counter called Bus snoop

stalled cycles/sec has intrinsic interest on a multiprocessor.

A high rate of stalls due to snooping is a direct indicator of
Larger Level 2 caches help reduce bus traffic, but there ~ multiprocessor contention. See Figure 11, which again was
are diminishing returns from caches that are, in effect, too measured on a two-way multiprocessor. Notice the number
big. Each time a memory location is fetched directly froma of snooping-induced stalls is low in this example. Even
Level 1 or Level 2 cache, it is not necessary to broadcast though as a percentage of the total resource stalls they are
the address on the bus. However, at some point, larger practically insignificant in this example, this is still a
caches do not result in significant improvements in the rate measurement that bears watching.

of cache hits, yet they increase the management overhead

Clocks per bus transaction

10,000,000 50
9,000,000 -
8,000,000 | - 40
7,000,000 -
(2]
c
» 6,000,000 130 8
g &
9 5,000,000 - x
IT) 1]
© 4,000,000 b 20 ©
o
3,000,000 | \J
')
2,000,000 | L 10
1,000,000 1
0 L L L L L O O B B O TITT T T T T o

Time

II:I Bus requests outstanding/sec T Bus all transactions/sec —e— Clocks per bus transaction

FIGURE 13. CALCULATING THE AVERAGE CLOCKS PER BUS TRANSACTION FROM THE UNIPROCESSOR MEASUREMENTS SHOWN IN FIGURE 11 USING
EXCEL. THE NUMBER OF CLOCKS PER BUS TRANSACTION RANGES BETWEEN 10 AND 30, WITH AN AVERAGE OF ABOUT 18.

Next, consider the P6 Bus requests outstanding Counter,
which is a direct measurement of bus utilization in clocks.
By also monitoring Bus all transactions, you can derive a
simple response time measure of bus transactions measured
as the average clocks per transactions:

AVERAGE CLOCKS PER TRANSACTIONS =

BUs REQUESTS OUTSTANDING =+ BUS ALL TRANSACTIONS

Assuming contention for the shared-memory bus is a
factor, saturation of the bus on an n-way multiprocessor
will likely drive up bus transaction response time, mea-
sured in clocks per transaction on average. Figure 12, a
Perfmon screen shot, provides a uniprocessor baseline for
this calculation. Since Perfmon cannot perform any
arithmetic calculations, we exported the chart data to a file
so that it could be processed in an Excel spreadsheet.
Using Excel, we are able to divide Bus requests outstand-
ing by Bus all transactions to derive the average number of
clocks per transaction. (Bear in mind that we can access
only two P5 or P6 Counters at a time. Since memory
transactions typically represent more than 99% of all bus
transactions, it is safe to assume that clock cycles calcu-
lated using this formula genuinely do reflect the time it
takes the processor to access memory.) The average clocks
per bus transaction in this example generally falls in the
range of 10-30 clocks, with an average of about 18 clocks
per transaction. These calculations are summarized in the
chart shown in Figure 13. In the case of a uniprocessor, the
memory bus is a dedicated resource and there is no
contention. Now compare the uniprocessor baseline in
Figure 12 to a two-way multiprocessor in Figure 14. Here
the average clocks per transaction is about 30, coming in at
the high end of the uniprocessor range. The average
number of clocks per bus transaction increases because of
queuing delays in accessing the shared-memory bus in the
multiprocessor. In a shared memory multiprocessor, there
is going to be memory bus contention. By tracking these
P6 Counters, you can detect environments where adding
more processors to the system will not speed up processing
any because the shared-memory bus is already saturated.
Bus contention tends to set an upper limit on the perfor-
mance of a multiprocessor configuration, and the P6
Counters let you measure this.

Queued spin locks. With the Pentium III, Intel intro-
duced a new instruction called PAUSE that reduces the bus
contention that results from repeatedly executing spin lock
code. The Windows 2000 HAL adds a new queued spin
lock function that exploits the new hardware instruction,
where available. Device driver code trying to enter a
critical section protected by a queued spin lock issues the
PAUSE instruction, referencing the lock word protecting
that piece of code. PAUSE halts the CPU until the lock
word is changed by a different executing thread running on
another processor. At that point, the PAUSEd processor
wakes up and resumes execution.

% sk Pt E1mIRr HiER
Filw Sule:l Thunk e
l‘I
-~ i,
1) 'I.'-.'I . L
.'I e s S
v L \
I
— - d
el] 5 162w
T |
IJI .‘.lr\.__ .I !
7 R L Y “
padily R
! N 1
—_——
_l' 1 O
N A PEEAT T IER
L]
t -\.II'III-'
|I T IJI. Il.ll |I| ":. "I ‘II.-' -I i
il T [(P4 h et 44 B
EJEIS. A 2

FiGURE 14. AVERAGE CLOCKS PER BUS TRANSACTION ON A TWO-
WAY MULTIPROCESSOR. THE AVERAGE BUS TRANSACTION HERE
TAKES ABOUT THIRTY CLOCKS.

The PAUSE instruction was designed to eliminate the
bus transactions that occur when spin lock code repeatedly
tries to test and set a memory location. Instead of repeat-
edly executing code that tests the value of a lock word to
see if it is safe to enter a critical section, queued spin locks
wait quietly without generating any bus transactions. Since
saturation of the shared memory bus is an inherent problem
in shared memory multiprocessors, this innovation should
improve the scalability of Windows 2000. At the same
time, Intel designers also boosted the performance of the
Pentium III system bus significantly, something which
should also improve multiprocessor scalability under
Windows 2000.

References.

[1] NeilJ. Gunther, The Practical Performance Analyst.
New York: McGraw-Hill, 1998.

[2] Mark B. Friedman, Optimizing the Performance
of Wintel Applications. CMG ‘98 Proceedings,
(December 1998) 245-259.

[3] Mark B. Friedman, Windows NT Page replace-
ment Policies. CMG ‘99 Proceedings,
(December 1999) 234-244.

[4] Intel Architecture Software Developer’s Guide:
Volume 3, System Programming Guide, 1998.

[5]1 Microsoft Windows NT 4.0 Workstation Resource
Kit. Redmond, WA: Microsoft Press, 1996.

ArPENDIX A. P6 SHARED-MEMORY BUS MEASUREMENTS.
Bus all transactions/sec
Bus BNR pin drive cycles/sec
Bus burst read transactions/sec
Bus burst transactions (total)/sec
Bus clocks receiving data/sec
Bus CPU drives HIT cycles/sec
Bus CPU drives HITM cycles/sec
Bus deferred transactions/sec
Bus DRDY asserted clocks/sec
Bus instruction fetches/sec
Bus invalidate transactions/sec
Bus IO transactions/sec
Bus LOCK asserted clocks/sec
Bus memory transactions (total)/sec
Bus partial transactions/sec
Bus partial write transactions/sec
Bus read for ownership trans/sec
Bus requests outstanding/sec
Bus snoop stalled cycles/sec
Bus writeback transactions/sec

