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The basic elements of disk hardware performance are common across all platforms. What complicates disk tuning today on every
platform, including Windows, is virtualization technology that hides the true nature of the physical disk from the host operating
system. This session discusses a simple procedure to measure the performance of the physical disk entity and establish reasonable
service time expectations for any virtual or physical device. If actual measured performance exceeds these service expectations, you
can then decide on an appropriate disk tuning strategy.

Introduction
The paper outlines a simplified approach to disk tuning

in the Windows environment. Since essentially the same
disk hardware is currently used across all the major
enterprise computing platforms, the basic elements of disk
hardware performance are common across those platforms.
This certainly does simplify many aspects of disk configu-
ration and tuning on the Windows platform. Meanwhile,
the Windows operating system manages to inject some
unique considerations into procedures designed to opti-
mize disk performance, some of which are discussed here.
These include the disk performance measurements that the
OS provides and the disk device driver options that can
influence performance. Outside these platform-specific
considerations, disk device performance on Windows
machines is virtually identical to most varieties of UNIX
servers. Except for the differences in the linkage used to
connect disk devices to the host machine — e.g., Fibre
Channel vs. FiCON – disk device performance on Windows
is also identical to the IBM mainframe z/OS platform.

What complicates disk tuning today on every platform,
including Windows, is virtualization technology that hides
the true nature of the physical disk from the host operating
system. From inside Windows — which is where the
measurements of disk performance originate — what appears
as a physical disk is likely to be a virtual disk of some sort,
especially in an enterprise storage environment. Virtual disks
are entities that RAID controllers export. They  impersonate
the characteristics of a physical disk device. Virtualization
engines — usually embedded inside the disk controller —
mask the physical characteristics of the underlying disk
hardware. Whether the physical disk the host sees is a single
physical disk entity or a series of disks or disk segments
organized into a RAID grouping and buffered using cache
memory is transparent to the host software.

Traditional approach. The traditional approach to disk
performance and tuning is to use the device’s physical
characteristics — seek time, rotational delay, data transfer
speed and protocol delay — to create a set of reasonable

service time expectations. Next, the device is treated as a
single server in a simple M/M/1 queuing model to derive
reasonable expectations of queue time under load. Then, the
performance analyst compares the actual performance of the
device to the modeled set of expectations. If actual perfor-
mance levels greatly exceed these reasonable expected levels of
performance, then there are grounds for pursuing various
performance-oriented configuration and tuning strategies. If
actual performance levels are roughly equal to reasonable
expectations, there is little merit to pursuing any of the
configuration and tuning options available, other than
perhaps buying faster devices.

Applying this proven technique to today’s virtualization
engines involves creating a queuing model of the disk
subsystem that is exporting these virtual disks, where each
of the internal components of the disk subsystem is loaded
based on the measured workload. Solving the queuing
model will show which components of the disk subsystem
saturate first under load and constrain performance. While
undoubtedly that is an effective method, there are any
number of complexities that arise in typical enterprise
storage area networks that may make that approach quite
difficult to put in practice, even for experienced disk
performance analysts. In particular, it may become
necessary to understand in some detail the underlying
physical configuration of disks, links, and caches that
comprise the virtual volume.

When poor disk performance makes it necessary to
figure out what is going on behind the scenes with one of
these virtual disks, the task can be quite daunting. One
aspect of the challenge is that the architecture of the disk
subsystem, or storage processor, that presents the device
image to the host OS can be fairly complex, replete with
internal processors, buses, and the physical disks them-
selves.[1] The virtual disk data that is recorded is usually
mapped to two or more physical disks, or portions thereof,
in an arrangement that conforms to one of the RAID
levels. Performance considerations of the popular forms of
RAID are also well-known.[2]



When the virtual disks the storage processor exports are
distributed across multiple hosts, there may be other compli-
cations. These include the necessity to amalgamate disk
performance measurement data from different and often
incompatible sources. Many storage processors do generate
statistics that can be used to illuminate many aspects of their
performance, but it may be difficult to synchronize them to
the different sources of host-based measurements.

Benchmarking. Without needing to know what is
going on behind the scenes of the virtualized physical disk
image, the performance analyst can fall back on using a
simpler method that is no less empirical and robust. This
alternative method avoids attempting to build an idealized
model of the disk subsystem and gathering measurement
data to load it appropriately. Instead, to establish reason-
able service time expectations for the virtual device, you
measure its performance directly. This empirical data on
virtual disk performance expectations is made under a
controlled load. This paper will suggest a compact set of
specific benchmark measurements of disk performance
that should be taken in a controlled environment that can
be used to establish a set of reasonable device performance
expectations.

Once you have established reasonable expectations for
device service time in this simple and direct manner, you
can compare actual service time of the disks that the host
system is accessing using measurements that are easily
obtained in the Windows environment. If your actual
measured performance levels far exceed reasonable service
expectations, you can then decide on an appropriate disk
tuning strategy to improve the situation. This paper will
also describe in general terms the most effective tuning
strategies you can employ, along with guidelines that will
assist you in determining which are likely to be most
effective for your specific performance problem.

Characterizing disk performance
The time it takes to access data on a physical disk is the

sum of the following mechanical components, information
which can usually be acquired from the specifications
provided by the disk manufacturer:

Disk service time = seek time + rotational delay +Disk service time = seek time + rotational delay +Disk service time = seek time + rotational delay +Disk service time = seek time + rotational delay +Disk service time = seek time + rotational delay +
data transferdata transferdata transferdata transferdata transfer

Seek time is the time it takes to re-position the read/write
actuator from the current track location to the specified
track location. This is sometimes called a motion seek
because it requires a mechanical motion to move the disk
arm from one spot on the disk to another. Seek time is
roughly a linear function of the distance between the
current track and the destination track, if you allow for
some additional delay to overcome inertia initially, reach
maximum speed, and braking at the end of the mechanical
operation. A minimum seek is the time it takes to move
from one track to its neighbor. A maximum seek moves the

arm from one end of the disk to the other. An average seek
is based on moving the head from one random location on
the disk to another random spot. Statistically, this
amounts to a seek of 1/3 the maximum seek distance. A
zero seek refers to an operation on the current track that
requires no mechanical delay to re-position the read/write
arm.

Rotational delay is the time it takes for the selected sector
within the designated track to rotate under the read/write
head before it can be accessed. This is often called the
device latency. This delay is a function of the disk’s
rotation speed. If the platters spin continuously at 10,000
revolutions per minute (rpm), then a complete rotation of
the disk takes about 6 milliseconds, which is the maximum
rotational delay. The specific sector being accessed to
begin the read or write operation can be located anywhere
within the designated track, as the track spins relative to
the read/write head. Consequently, an average rotational
delay is 1/2 of a complete disk revolution.

Data transfer time is the time it takes to transfer data from the
host to the disk on a write operation or from the disk to the
host on read operation. The device’s data transfer rate,
normally specified in MB/sec, is the product of the track
recording density times the rotational speed. While rotational
speed is constant for all tracks on a platter, the recording
density usually varies. Data tracks that reside on the outer
surface of the platter ordinarily contain twice as many data
sectors as inner tracks. As a result, data can be transferred to
and from outside tracks at twice the data rate of an inner
track. The size of the data block being transferred also figures
into the data transfer time. For example, if the average block
size is 12 KB and the track transfer rate is 60 MB/sec, then
data transfer time is approximately 0.5 ms.

The file system allocation unit size normally determines
the size of I/O requests. However, the Windows operating
system transforms individual I/O requests into bulk
requests under some circumstances. Demand page reads
are sometimes grouped into bulk requests. In addition,
write requests subject to the Lazy Write file cache flushes
are also usually transformed into bulk requests. Bulk
requests usually increase the average size of data transfers
in blocks several times the file system allocation unit size.

Additional factors that significantly affect the speed of
the device include the interface type (Fibre Channel,
SCSI, ATA), interface speed, and the use of on-board
cache, which is present on most disk devices built today.

Table 1 shows the performance characteristics of a
typical server disk, based on the specifications published by
the manufacturer.

Performance of virtual disks cannot be so readily
characterized due to the use of disk arrays, RAID organi-
zation, and caching. Instead, the performance of virtual
disks can be characterized by measuring the performance
of the device on a range of workloads using an I/O load



generator. For purposes of illustration, the Iometer
(pronounced, “I ahm et er”) disk benchmarking program is
used here. Iometer is a disk benchmarking program
originally developed at Intel for the Windows NT plat-
form. It is currently available as an Open Source project,
where it can be downloaded for free from a variety of
Open Source web sites (see, for example, http://
sourceforge.net/projects/iometer/). Iometer has a graphical
console that allows you to set up and run benchmark disk
I/O workloads. It can be installed and run locally. Or you
can install the benchmark agents on remote machines and
control them from the console. Using networking, you can
drive an I/O load to a shared disk subsystem from multiple
client machines, which is important when the capacity of
the client machine is itself a constraint. In the examples
illustrated, Iometer was run locally.

Determining what I/O workloads to execute that will
calibrate the performance of the disk device fairly and
accurately is the most important issue in designing the
scope of your benchmark.

Synthetic workloads vs. actual or composite workloads
Pure synthetic workloads are simple, one dimensional

tests, like a single run made using 100% reads of 4K blocks
with random seeks. An actual or composite workload
would be one based on measuring your production
workloads — something you are going to have to do
anyway when you compare the actual performance of the
device to the expected performance levels that you derived
from the benchmarking — and building a synthetic
workload to match.

The approach discussed here advocates using a series of
pure synthetic workloads that are used to characterize
device performance across three vectors:

Reads vs. Writes. Some devices handle Reads and Writes
differently. Physical devices may take slightly longer to

write data than read it back. Writes can involve extra
integrity checking that elongates the service time. Disk
arrays configured as RAID 1 and 5 devices face a signifi-
cant write performance penalty due to the necessity of
having to maintain redundant data. [2]

Cacheability. Cache memory on board the device or the
subsystem controller remains one of the most important
performance options for disks. Access to data available in
cache (a cache hit) is usually significantly faster than accessing
the physical disk. On a read cache hit, the device (or sub-
system) can return data without having to perform the
physical operations otherwise necessary to access the media.
On a fast write to cache, the device or subsystem will return
successful completion status as soon as the data is safely
stored in cache memory. Using deferred write-back caching,
the write operation ultimately updates the disk, but not until
some point later in time. Since the disk update operation is
performed asynchronously, it is invisible to host-based
measurement techniques. Instead, the host is only capable of
measuring the duration of the fast write to cache.

Cache effectiveness varies as a function of the workload.
The cacheability of the workload is better under some
circumstances than others. It can be viewed as a con-
tinuum, as illustrated in Figure 1, that ranges from a
random access pattern that yields very low Read cache hit
ratios to highly localized access patterns that produce near
100% cached Read hits. Sequential access are viewed as a
special case of a highly localized access pattern, with very
similar, but not identical, performance characteristics.
Caching controllers can normally detect Read sequential
access patterns, leading to read-ahead and delete-behind
actions that yield near 100% cache hit ratios with a very
small cache footprint. RAID controllers that detect write
sequential patterns can defer disk updates until an entire
disk stripe and its associated redundant data can be written
in an efficient bulk operation.
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TABLE 1. DISK HARDWARE PERFORMANCE CHARACTERISTICS.
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Block size. The data transfer component of disk
service time is usually a linear function of the
block size of the average transfer. However, block
size can also interact with the RAID controller
stripe set size. When disk striping is in effect, a
Read or Write of a block of data that spans disk
segments can be performed in parallel to
multiple disks in the array.

A sample test regimen that will characterize
disk performance along these three vectors
might take the form illustrated in Table 2.
Reads and Writes are separately categorized by
sequential, random, and highly localized
workloads. A range of exponentially increasing
block sizes are tested.

Extraploating to production workloads. Measured
results from this compact set of pure, synthetic workloads
can then be used to extrapolate to the expected perfor-
mance of the device on any actual disk workload. To
perform this extrapolation, you must characterize the disk
workload according to its Read/Write ratio, its cache hit
ratios for Reads and for Writes, and the average block sizes
of both Reads and Writes. If you are able to characterize
your production I/O workloads along these three dimen-
sions, you will be able to extrapolate from the benchmark
results for the synthetic workloads to a set of reasonable
performance expectations for actual workloads. I/O
measurement data that is routinely available on the
Windows platform can report accurately on the percentage
of Reads, the percentage of Writes, and the average block
sizes of Read and Write requests. If your caching control-
ler is able to measure and report on its performance, you
will have ready access to the cache hit ratio information
that is required. If you do not have cache hit ratio informa-
tion, you can usually work backwards from the weighted
average service time equation mentioned below to derive
reasonable cache hit ratio estimates.

If the average block size of the actual request is known,
you can extrapolate from these benchmark results using
either the sequential or 100% cache hits columns because
those results reflect operations that entail data transfer
only. In the absence of disk striping, you can extrapolate
using a linear regression model, solving for

y = mx + by = mx + by = mx + by = mx + by = mx + b

where y is the expected data transfer time; b, the y-
intercept reflects protocol time, cache directory look-up,
and other overhead delays common to all I/O operations; x
is the block size; and m is the data transfer rate.

If the cache hit ratios of the actual workload are known,
you can extrapolate service time for the actual workload
using the weighted service time equation for cached disks:

w = w = w = w = w = λλλλλ * [ * [ * [ * [ * [ppppp*(w*(w*(w*(w*(w
ccccc) + (1-) + (1-) + (1-) + (1-) + (1-ppppp)*(w)*(w)*(w)*(w)*(w

diskdiskdiskdiskdisk)])])])])]

where w is the weighted average service time of the device,
λλλλλ is the arrival rate, p is the probability of cached hit, wc is

the service time of cache hit, and wdisk is the service time to
disk [3].

An example: measuring the performance of a
single disk system.

The easiest way to illustrate this approach is to apply it
to the characterization of a simple, single physical disk
locally attached to one of your servers. Because the single
physical disk in this experiment is not accessed via a
caching controller, the benchmarking regimen used to
characterize its performance can be simplified. It will not
be necessary to understand how well the device performs
under a range of cacheability conditions. Nevertheless, the
device contains an actuator-level buffer that can have a big
impact on sequential processing. Consequently, it is
important to test the device under conditions that show
the influence of the on-board disk cache. On the assump-
tion that physical disk data transfer rates are almost wholly
a function of block size, the range of block sizes that need
to be evaluated in this case can also be abbreviated. These
considerations lead to the adoption of an abbreviated
testing matrix that is illustrated in Table 3.

I/O rates for a single physical disk for these twelve test
cases are shown in Figure 2. The data shown here is taken
from the operating system’s performance monitoring
interface. (Iometer gathers disk performance statistics, too,
which are substantially similar.) The timed trials illustrated
here measured performance on tests that each lasted three
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minutes in duration, where each separate trial was also
preceded by a 30-second “warm-up” period where no
measurements were generated. The stability of these
results suggest that the test period selected could well have
been shorter without significantly biasing the results. In
my experience, tests of one minute in duration are nor-
mally sufficient. Measurements using tests of shorter
duration allow you to gather a full battery of test results for
a physical or virtual device in one hour or less.

Sequential access
The measurement results show the

significant difference in performance levels
when sequential access is used. At the 4 KB
block size, the physical device is capable of
processing in excess of 5000 Read I/O
requests per second. For 16 KB blocks, the
sequential read rate declines to approxi-
mately 1900 I/Os per second. Using 64 KB,
the I/O rate falls to 725 per second.

Figure 3 illustrates the relationship
between block size and I/O rates for both
sequential Read and Write requests. Figure
3 suggests the underlying relationship is
non-linear, a hypothesis that can be
explored further by obtaining results for
intermediate block sizes. Using 4K blocks,
the physical disk can process about 30%
more Reads than Writes. As the block size
increases, the Read and Write sequential I/
O rates tend to converge. At 64KB, there is
little difference in the Read and Write I/O
rates. This strongly suggests the influence
of another factor limiting the I/O through-
put for large block operations, namely, the

capacity of the link, which apparently saturates
at higher block sizes.

By assuming that the device is driven to
100% utilization by the benchmark I/O driver,
you can calculate the average service time of
the requests by applying the Utilization Law.
This calculation is illustrated in Figure 4. This
chart shows 4KB sequential Read requests
being handled in 0.2 milliseconds, on average,
with Write requests taking just slightly longer.
Accurately measuring disk services time of that
magnitude used to be a problem in Windows
NT versions 3 and 4 due to the granularity of
the system clock. This granularity issue was
addressed in Windows 2000 and above with
the introduction of a new high precision clock
API that times disk I/O events using the full
timer granularity provided by the hardware
clock.

It should be evident from these results on
the sequential tests that performance of the native device is
about as good as it gets. The device’s built-in caching
algorithms deliver a near 100% cache hit rate. Results with
controller-resident cache mediating access to the physical
disk should be equivalent — they can hardly ever get much
better, except for the case where the controller front-end
bandwidth exceeds the device interface bandwidth.

You can project the service time for a cache hit as a
function of block size on the assumption that the 4K and
16K cases represent two measurement points on a linear

FIGURE 2. DISK THROUGHPUT FOR TWELVE TEST CASES.
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model. Since the 64K trial shows evidence of saturation at
the link, it is best to exclude those results from the linear
model. This extrapolation is illustrated in Figure 5 using
MS Excel’s trendline and forecast functions:

Excel calculates the linear regression models
for the straight lines that can be drawn between
these two sets of two measurement points. Then
the Chart trendline function can be used to forecast
the linear model in both directions — forward to 64
KB and backward to 0. Based on linear projection,
32 KB Read and Write cache hits would complete
in just under or just over 1 ms., respectively. In the
linear equations shown, the y-intercept values can
be thought of as protocol time, plus any other
overhead components that are required to initiate
and complete each I/O operation. The 64K Read
actual point is also illustrated to emphasize that this
calculation is a projection that will likely hold, until
some other bottleneck in the path to the device
becomes prominent.

Random disk I/O
The Random disk I/O results presented here

represent a “best case” set of service time expecta-
tions for the device in at least two respects:

• The average seek distance is foreshortened because
the Iometer test file is not allocated across the full
device.
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• An attempt was made to reflect load dependent
behavior that improves average device service time in
the presence of queued I/O requests to the disk.

Both of these considerations reflect an attempt to con-
struct a synthetic workload that is a closer approximation
of real world conditions where allocations frequently do
not span the entire disk, the actual workload is a mixture
of random and zero seeks, and the load dependent behav-
ior of current disk technology is quite significant during
periods of severe disk contention. These considerations are
discussed in more detail below.

The Random disk Read and Write trials were executed
against a file called iobw.tst that Iometer allocated on the
C drive, as specified in the Iometer Disk Targets panel. In
this instance, a 1,000,000 sector file was specified. At 512
bytes per sector, the target file was 500 MB in size.
Iometer then executes random seeks within this file extent.
On this test system with a 72 GB hard drive that was less
than 15% full, the iobw.tst file is expected to be allocated
with little or no fragmentation across contiguous physical
disk sectors. The random seeks that Iometer generates are
limited to seeks within the scope of the iobw.tst test file.
Consequently, random seek performance in this test is
subject to shorter average seeks than can be expected if the
entire disk volume were full.

The Random disk tests also specified that up to four
I/O requests to the device could be issued concurrently.
This emulates SCSI command tag queuing to a queue
depth of 4. When it is enabled, SCSI command tag

queuing can significantly
improve the device’s perfor-
mance under peak loads, as
demonstrated in [4]. When
SCSI command tag queuing is
enabled, the device is free to
select the queued request that
can be serviced fastest next,
which results in the device
minimizing seek and rotational
delays by selecting that queued
request that is closest to the
current arm position. When
SCSI command tag queuing is
enabled, the disk is best
modeled as a load dependent
server [5], where its average
service time will decrease under
higher loads. Limiting the disk
queue depth to 4 imitates a
heavily loaded device during a
peak period when SCSI
command tag queuing is
beneficial, without so overload-
ing the device that it becomes a
performance bottleneck.

The Random I/O throughput results that were mea-
sured are illustrated in Figure 6. Random writes uniformly
outperform random reads because the disk actuator buffer
is more effective for write operations. Write data is passed
to the disk buffer at full interface speed, which exceeds the
data rates the physical media supports. Random write I/O
throughput also appears to be relatively insensitive to
changes in block size in this series of tests. Uniform results
for random Writes of varying block sizes can be expected
so long as the size of the block being written does not
exceed the size of a disk track. On the other hand, random
Read average I/O service time increases 40% from 7.1 ms.
for 4K blocks to about 10 ms. for 64K blocks.

Device service time expectations summary
Table 4 summarizes the device service time expectations
for this series of twelve tests.
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Queue time expectations
A queue time expectation should be added to the service

time to calculate an expected device response time. After
measuring the device service time on a range of workloads,
you can establish reasonable queue time expectations using
simple queuing models. Figure 7 illustrates modeling
device performance using a simple M/M/1 queue, where
queue time, Wq, can be estimated as a function of the
service time, Ws, and the device utilization, u, according to
the following formula [6]:

WWWWWqqqqq = (W = (W = (W = (W = (Wsssss*u)/(1-u)*u)/(1-u)*u)/(1-u)*u)/(1-u)*u)/(1-u)

For the sake of a more simplified presentation, calculations
for only selected device service time values from Table 3
are displayed here.

Comparing actual measurements to expected
results

Once you are able to establish a baseline set of reason-
able performance expectations for your disks, you are ready
to compare actual measurements to these expected results.
If actual measurements do not depart very much from
expected values, there is very little reason to believe that
disk configuration and tuning strategies will bring much
benefit. If the gap between measured performance and
expected performance is substantial, then understanding
the nature of the gap will help you to select an appropriate
tuning strategy. It is important to understand whether this
gap is due to disk service time that is significantly worse
than expected or if it is due to significant queuing, either
of which can be improved through tuning.

Two measurement layers embedded into the I/O
Manager device driver stack are the source for all disk
performance statistics in Windows, as illusrtated in Figure
8. One layer provides measurements of logical disks, while
the other is responsible for measuring physical disks. (Of

course, as emphasized above, what the OS
views as a physical disk entity, may be a virtual
disk instead.) Currently, in Windows Server
2003, the measurement functions are incorpo-
rated directly into the appropriate I/O Manager
functional layers, as illustrated in Figure 8.

The physical disk partition manager func-
tion is performed in Windows Server 2003 by
partmgr.sys. The logical disk management
functions are performed by dmio.sys. Both
logical and physical disk measurements are
enabled by default in Windows 2003 — indeed,
there is no way to turn off these essential
performance measurements in the latest version
of the Windows OS.

Prior to Windows Server 2003, disk perfor-
mance measurements were optional. Statistics
were gathered by a separate measurement layer,
diskperf.sys, that had to be enabled manually
using the diskperf command. In Windows
2000, the Physical Disk measurements were
enabled by default, while the Logical Disk
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measurements had to be enabled manually using the
diskperf -yv command. In earlier versions of Windows,
both sets of disk measurements were disabled by default
and had to be enabled manually. Many system administra-
tors have leaped to the assumption that the measurements
were made optional due to their impact on performance
and would refuse to turn them on. The fact that the
measurements are now standard features of the operating
system should allay those unfounded fears once and for all.

A more persistent source of confusion in the Windows
disk performance measurements arises due to a mixture of
measured values that you can rely on and calculated values
that are often misleading. The metrics that the disk
performance measurement layer measures directly are
cataloged in Table 5, which was extracted from the
documentation provided in the platform SDK: The
measurements taken supply throughput (Disk Read Bytes/
sec, Disk Write Bytes/sec), device response time (Avg.
Disk sec/Read, Avg. Disk sec/Write), the inverse of device
utilization (% Idle Time), and arrival rates (Disk Reads/
sec, Disk Writes/sec), broken down by Read and Write
operations. In addition, the Current Disk Queue Length
counter supplies an instantaneous measure of the number
of outstanding requests, including both those requests in
service at the device and those that are queued in the
device driver stack.

All the remaining disk performance counters that are
available in Windows are derived from these basic mea-
surements. Disk Transfers/sec, for example, is the sum of
Disk Reads/sec + Disk Writes/sec.

Several of the derived measurements are a source of
much confusion. These include % Disk Read Time, %
Disk Write Time, and % Disk Time, which are also
inaccurately named. From their names alone, the % Disk
Time counters suggest that they represent measures of disk
utilization. The official Explain text that accompanies
these counters inside the System Monitor applet reinforces

the confusion: “% Disk Time is the percentage of elapsed
time that the selected disk drive was busy servicing [em-
phasis added] read or write requests.” Unfortunately, the
calculation used to derive % Disk Time is based on neither
service time nor device utilization. To make matters worse,
the % Disk Time counter is the single counter in both the
Physical and Logical Disk objects that is recommended for
use when you first start up a System Monitor reporting
session.

Over a single measurement interval, % Disk Time is
calculated as follows:

% Disk Time = MIN(100,(ReadTime+WriteTime)*100/% Disk Time = MIN(100,(ReadTime+WriteTime)*100/% Disk Time = MIN(100,(ReadTime+WriteTime)*100/% Disk Time = MIN(100,(ReadTime+WriteTime)*100/% Disk Time = MIN(100,(ReadTime+WriteTime)*100/
Duration)Duration)Duration)Duration)Duration)

The sum of ReadTime + WriteTime represents the
elapsed time of all completed I/O operations during the
interval. Since these measurements include any queuing
delays, for busy devices the sum of ReadTime +
WriteTime can easily exceed the interval duration, which
would lead to the System Monitor reporting values in
excess of 100%. Reporting derived values of % Disk Time
in excess of 100% must have troubled the developers of the
initial production releases of Windows NT, so they capped
the values this counter reports at 100%.

Windows NT version 4.0 subsequently introduced a set
of similar Avg. Disk Queue Length counters based on the
formula:

% Avg. Disk Queue Length = (ReadTime+WriteTime)/% Avg. Disk Queue Length = (ReadTime+WriteTime)/% Avg. Disk Queue Length = (ReadTime+WriteTime)/% Avg. Disk Queue Length = (ReadTime+WriteTime)/% Avg. Disk Queue Length = (ReadTime+WriteTime)/
Duration)Duration)Duration)Duration)Duration)

which effectively removed the artificial capping. This
formula is, of course, a variation of Little’s Law and is
described appropriately in the accompanying Explain text.
Nevertheless, the % Disk Time counters were retained,
which was probably a mistake.

Beginning in Windows 2000, the disk performance
layer measures disk utilization, albeit indirectly by calculat-
ing % Idle Time. Using % Idle Time, it is possible to
derive disk utilization, then apply the Utilization Law to
calculate disk service time, and, finally, separate device

service time from the measured value of disk response
time to calculate disk queue time. The straightforward
calculations to produce these performance statistics is
illustrated below, which shows the fields that are directly
measured in italics to distinguish them from the derived
values you need to calculate:

Disk utilization = 100 - Disk utilization = 100 - Disk utilization = 100 - Disk utilization = 100 - Disk utilization = 100 - % Idle Time% Idle Time% Idle Time% Idle Time% Idle Time

Disk service time = Disk utilization ÷ Disk service time = Disk utilization ÷ Disk service time = Disk utilization ÷ Disk service time = Disk utilization ÷ Disk service time = Disk utilization ÷ Avg. DiskAvg. DiskAvg. DiskAvg. DiskAvg. Disk
transfers/sectransfers/sectransfers/sectransfers/sectransfers/sec

Disk queue time = Disk queue time = Disk queue time = Disk queue time = Disk queue time = Avg. Disk secs/TransferAvg. Disk secs/TransferAvg. Disk secs/TransferAvg. Disk secs/TransferAvg. Disk secs/Transfer - disk - disk - disk - disk - disk
service timeservice timeservice timeservice timeservice time

Decomposing the disk response time measurements
that Windows provides into service time and queue time
allows you to determine if the disk is performing poorly
or if the disk is overloaded. Of course, the actual service
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time reported should be compared against the reasonable
service expectations that you have derived empirically to
see if there is a disk service time gap of a magnitude large
enough to be of concern.

Figure 9 illustrates the first of these calculations,
showing disk utilization over a three-hour period for the
same physical disk that was used in the earlier benchmarks.
The disk is lightly loaded for the most part, but there is a
period of heavy I/O activity shortly after 17:00 hours
where disk utilization rises above
50% and response time starts to
deteriorate.

Figure 10 completes the disk
performance picture by showing
disk service time and queue time
over the same three hour period.

Figure 9 and 10 clearly show
that at low I/O rates disk response
time is consistently under 3-5 ms.,
with very little queuing delay.
Compared to the disk service time
expectations for this disk that we
examined earlier, these service
times are well within an expected
range of values for a disk I/O
workload with up to 50% sequen-
tial access. However, as the disk
gets consistently busier, there is a
greater chance for queuing delays
to occur. During peak loads, queue
time delays are larger than device
service times, with several intervals
showing disk response times in

excess of 15 ms., double the
reasonable performance expecta-
tions for the disk that were
established experimentally.

Disk performance
improvement strategies

Adopting an effective disk
tuning strategy begins with
understanding where your disk
bottleneck is. As discussed in the
previous section, “Comparing
actual measurements to expected
results,” you need to find out if the
disk is performing poorly (if service
time > expectations) or if the disk
is overloaded (if queue time >
service time). Some configuration
and tuning strategies address the
problem of poor disk service time.
Improving disk service time
reduces the load on the disk, so

indirectly these strategies also reduce queuing delays.
Other strategies are primarily aimed at workload balanc-
ing, which has very little to do with improving disk service
time, but directly reduces queuing delays. If disk service
time is poor, a strategy that attacks queuing delays will
yield little improvement. If disk queue time delay is a
major factor, a strategy aimed at balancing the disk

FIGURE 9. DISK UTILIZATION IS DERIVED FROM % IDLE TIME.

FIGURE 10. DISK SERVICE TIME AND QUEUE TIME.



workload better across multiple disks is often the easiest
and simplest path to improving performance.

This section briefly discusses the most important and
most common configuration and tuning strategies that are
employed on any platform, including Windows, to
improve disk performance. For each strategy, we indicate
whether it is primarily focused on improving disk service
time or disk queue time.

The disk configuration options considered include:

a. Deploying faster disks,
b. Spreading the disk workload over more disks,
c. Using disk array technology and RAID to spread the

disk workload over more disks, and
d. Implementing cached disk controllers.

In addition, the following disk tuning strategies are briefly
discussed:

a. Using memory-resident buffering to reduce physical
disk I/Os

b. Eliminating disk hot spots by balancing the I/O
workload across multiple disks, and

c. Defragmenting disks on a regular basis to increase
the amount of sequential disk processing.

Table 6 summarizes the discussion that follows, identify-
ing each strategy with the aspect of improved disk
performance — service time or queue time — that it most
effectively addresses.

The next section briefly considers these disk perfor-
mance configuration and tuning options in more detail in
the context of typical Windows Server machines.

Performance-oriented Disk Configuration options
Faster disks. Disk manufacturers build a range of devices

that span a wide spectrum of capacity, price, and perfor-
mance. You may be able to upgrade to disk devices with
improved seek time, faster rotational speeds, and higher
throughput rates. Faster devices will improve disk service
time directly. Assuming I/O rates remain constant, then
device utilization is lowered and queuing delays are
reduced. Note that the highest performing disks are also
the most expensive. A device that improves disk service
time by 20-30% may be 50% more expensive than standard
models.

When the other strategies under consideration fail for
one reason or another, buying faster disks will generally
always produce some improvement. Of course, if you are
already using the fastest disk devices available, you will
have to resort to a different strategy.

More disks. When performance is an important consid-
eration, you need to purchase higher cost, faster disks and
more of them. If you are running with the fastest disks
possible and you are driving utilization consistently above
50% busy, add more disks to the configuration and spread
the I/O workload evenly across these additional disks.
Spreading the load across more disks lowers the average
disk utilization, which then indirectly leads to reduced
queuing delays.

Disk arrays. The simplest way to spread the I/O workload
across multiple disks is to install array controllers that
automatically stripe data across multiple disks. If you are also
interested in adding fault tolerance to large disk configura-
tions, then you should be aware of the Write performance
penalty associated with RAID technology. Unless you are
reading and writing very large blocks, you should not expect

that using disk arrays will
improve device service time
significantly. But by balancing
the workload automatically across
all the disks in the array, you
eliminate disk hot spots and
reduce overall queue time delays.

Cached disks. Cached disk
controllers can often mask device
latency and improve disk service
time dramatically. Cache hits
eliminate all mechanical device
latency. Data can be transferred
from the cache to the channel at
full channel speeds, which is
usually faster than data can be
read or written to the disk media.
For RAID controllers, consider
battery-backed caches that are
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especially effective in masking the device latency associated
with RAID write operations.

Disk Tuning Strategies
Host-resident cache. The best way to improve the

performance of applications constrained by disk I/O is to
eliminate as many physical disk I/Os as possible using
RAM-resident cache buffering. Replacing an I/O opera-
tion to disk — even one to the fastest disk drive around —
with host memory access to disk data cached in RAM
achieves more speed-up than any other tuning strategy
considered here. Providing more host memory for larger
application database and file caches should increase cache
buffer hit rates and result in reduced physical disk activity.

Be aware that sometimes RAM is available, but Windows
server application configuration parameters restrict the
application from allocating additional database buffers.

The most effective memory-resident buffering succeeds in
eliminating most disk Read activity, but no amount of host-
resident buffering can eliminate all I/O to disk. Because file
and database updates must be propagated to the physical disk
eventually, Write activity as a percentage of overall disk
activity tends to increase as host-memory caching gains in
effectiveness. Effective caching also tends to increase the
burstiness of the physical disk operations that remain due to
the characteristic behavior of Lazy Write flushes.

Balance the disks. Disk storage capacity and disk back-up
and restore are usually the primary considerations when
you set up a new server, not disk performance. But most
system administrators try to lay out their files initially by
balancing the disk workload across available volumes. This
is difficult to do well initially without the experience of
knowing how these disks are accessed in a real production
environment. Even if you have done a good job initially in
balancing the I/O workload across the available disks,
changes in the configuration and the workload are likely to
create imbalances over time. Whenever one disk in the
configuration becomes overloaded, its disk queue elongates
and disk response time suffers. When this occurs, redis-
tributing files and databases to better balance the I/O load
will reduce disk queuing and improve response time.

Note: one of the easiest ways to ensure that the I/O
load remains balanced across multiple disk drives is to use
array controllers that automatically stripe data over
multiple disks. Both RAID 0/1 and RAID 5 disk arrays
spread I/O evenly across multiple disks.

Defragment disks to increase sequentiality. As file allocations
start to fill up the file system, files are no longer stored on the
disk in contiguous sectors. If the sectors allocated to the file
are not contiguous, then attempts to read the file sequentially
(from beginning to end) require more disk head movement.
Instead of sequential operations that need no disk arm seeks
between successive disk requests, numerous and long disk
seeks back and forth across the disk are required to access

successive fragments of the file. Under these circumstances,
disk service time increases substantially above reasonable
expected levels. Moreover, given how fast disk drives with
built-in cache buffers can process sequential requests, as
illustrated above, any increase in the proportion of sequential
disk requests has the potential to speed up disk processing
considerably. Long-running sequential processing workloads
benefit the most from defragmentation. These include file
transfers, disk-to-tape back-up, and other lengthy file copying
requests.

Summary
This paper provides a framework that emphasizes a

simple approach to disk performance and tuning on the
Windows platform. In a storage networking environment
what appears to the operating system as a physical disk
entity is likely to be a much more complex object to
analyze. This paper advocates a simple, direct measure-
ment approach in order to establish a reasonable set of disk
performance expectations for these devices. A full range of
benchmark workloads that will characterize its perfor-
mance in a comprehensive fashion can be executed against
the physical disk entity in an about an hour or less.
Performance expectations established through
benchmarking can then be compared to actual disk
performance statistics where the disk response times that
Windows measures are decomposed into measures of
service time and queue time. This response time decompo-
sition is a crucial step. It allows you to determine if the
disk is performing poorly or if the disk is overloaded, or
both, which then allows you to choose an appropriate
optimization strategy to correct the problem.
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