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Abstract.
This paper discusses the signs that indicate a machine is suffering from a virtual memory constraint in 32-bit
Windows. Machines configured with 2 GB or more of RAM installed are particularly vulnerable to this condition.
It also discusses options to keep this from happening, including (1) changing the way 32-bit virtual address
spaces are partitioned into private and shared ranges, (2) settings that govern the size of system memory pools,
(3) hardware that supports 37-bit addressing, and (4) hardware that supports 64-bit addressing but can still
run 32-bit applications in compatibility mode. Ultimately, the option of running Windows on 64-bit processors is
the safest and surest way to relieve the virtual memory constraints associated with 32-bit Windows.

Introduction
The Microsoft Windows Server 2003 operating

system creates a separate and independent virtual
address space for each individual process that is
launched. On 32-bit processors, each process virtual
address space can be as large as 4 GB. (On 64-bit
processors process virtual address spaces can be as
large as 8 TB in current versions of Windows Server
2003.) There are many server workloads that can
easily exhaust the 32-bit virtual address space
available under Windows Server 2003. Machines
configured with 2 GB or more of RAM installed
appear to be particularly vulnerable to these virtual
memory constraints for reasons that are discussed
below. When Windows Server 2003 workloads
exhaust their 32-bit virtual address space, the
consequences are usually catastrophic. This paper
discusses the signs and symptoms that indicate
there is a serious virtual memory constraint.

This paper also discusses the features and options
that system administrators can employ to forestall
running short of virtual memory. The Windows
Server 2003 operating system offers several forms of
relief from the virtual memory constraints that arise
on 32-bit machines. These include (1) options to
change the manner in which 32-bit process virtual
address spaces are partitioned into private addresses
and shared system addresses, (2) settings that
govern the size of key system memory pools, (3)
hardware options that permit 37-bit addressing, and
(4) hardware options that support 64-bit addressing.
By selecting among these options, system adminis-
trators can avoid many situations where virtual
memory constraints impact system availability and
performance. Since these virtual memory addressing
constraints arise inevitably as the size of RAM grows,
the most effective way to deal with these constraints
in the long run is to move to processors that can
access 64-bit virtual addresses, running the 64-bit
version Windows Server 2003.

Virtual addressing
Virtual memory is a feature supported by most

advanced processors. Hardware support for virtual
memory includes an address translation mechanism
to map logical (i.e., virtual) memory addresses that
application programs reference to physical (or real)
memory hardware addresses. Virtual address trans-
lation is then performed transparently by the
processor hardware during program execution. Only
authorized operating system functions are capable of
addressing physical memory locations directly.
Figure 1 illustrates the hardware virtual address
translation mechanism for Intel IA-32 processors.
The hardware splits each 32-bot address reference
into three segments. The high order ten bits of a
virtual address are used to point to a specific Page
Directory entry. The Page Directory entry points to a
page of Page Table entries (PTEs), which is indexed
using the middle ten bits of the virtual address to
locate a specific four-byte PTE. The PTE entry that is
cross-indexed in this fashion contains the high order
20 bits of the physical memory page that are then
merged during translation with the low order 12-bits
(enough to address 0-4095 bytes) of the virtual
address to create the physical memory address. The
operating system is responsible for building and
maintaining the Page Directory and associated PTEs
in the proper hardware-specified format on behalf of
each process address space that is created. The OS
also ensures that whenever a new program execution
thread is dispatched that the processor’s Control
Register 3 is loaded with a pointer to the origin of the
Page Directory for the process address space context
that the running thread is associated with.

To implement virtual address translation, when an
executable program’s image file is first loaded into
memory, the logical memory address range of the
application is divided into fixed size chunks called
pages. The operating system builds a PTE for each
valid page of virtual memory that is loaded and



FIGURE 1. VIRTUAL MEMORY ADDRESS TRANSLATION ON 32-BIT INTEL-COMPATIBLE PROCESSORS.

continues to build PTEs for additional pages that a
process allocates (for data structures and other
working storage, etc.) as it executes. The PTE sup-
plies the mapping information for those virtual
memory pages that reside in physical memory. This
mapping is dynamic so that logical addresses that
are frequently referenced tend to reside in physical
memory, while infrequently referenced pages are
relegated to paging files on secondary disk storage.
The active subset of virtual memory pages associated
with a single process address space that are cur-
rently resident in RAM is known as the process’s
working set.

The low order bit of a PTE, known as the Present
bit, is set to reflect the status of a virtual memory
page in physical memory. If the Present bit is not set,
the operating system stores information in the PTE
that points to its location on the paging file. A
reference to an invalid page by an executing thread
causes the hardware to report an addressing excep-
tion or page fault. The operating system then
intercedes to allocate a free page in RAM, copy the
contents of the page from disk to that physical
memory location, update the PTE appropriately, and
re-execute the instruction that originally failed. This
page fault resolution process can have profound
performance implications if performed frequently,
due to the relatively slow speed of mechanical disks
compared to the electronic speeds that prevail for
accessing physical memory locations. Readers
interested in a fuller understanding of this common
hardware mechanism should consult [1].

Most performance-oriented treatises on virtual
memory systems dissect the problems that can arise
when physical memory is over-committed and
excessive paging to disk occurs. Virtual memory

systems usually work well because executing pro-
grams seldom require all their pages to be resident in
physical memory concurrently in order to run. With
virtual memory, only the active pages associated with
a program’s current working set remain resident in
physical memory. On the other hand, virtual memory
systems can run very poorly when the working sets
of active processes greatly exceed the amount of RAM
that the computer contains. A physical memory
constraint is then transformed into an I/O bottleneck
due to excessive amounts of activity to the paging
disk (or disks).

Performance and capacity problems associated
with virtual memory architectural constraints tend to
receive far less scrutiny. These problems arise out of
a hardware limitation, namely, the number of bits
available to construct a memory address. The num-
ber of bits associated with a hardware memory
address determines the memory addressing range. In
the case of the 32-bit Intel-compatible processors
that run Microsoft Windows, address registers are 32
bits wide, allowing for addressability of 0-
4,294,967,295 bytes, which is conventionally
denoted as a 4 GB range. This 4 GB range can be an
architectural constraint, especially with workloads
that need 2 GB or more of RAM to perform well. The
suggestion that machines with 2 GB or more of RAM
installed are most susceptible to addressability
constraints is based on the observation that smaller
machines are more prone to  encounter paging
performance problems before the architectural
constraints discussed here are manifest.

Virtual memory constraints are manifest during
periods of transition from one processor architecture
to another. In the evolution of the Intel x86 proces-
sor, there was a period of transition from 16-bit

addressing that was a feature of the
original 8086 and 8088 processors
that launched the PC revolution to
the 24-bit segmented addressing
mode of the 80286 to the current
flat 32-bit addressing model that is
implemented across all Intel IA-32
processors. Currently, the IA-32
architecture is in a state of transi-
tion with two flavors of machines
capable of 64-bit addressing starting
to become widely available. As 64-bit
machines start to become more
commonplace, they will definitively
relieve the virtual memory con-
straints that are evident today on
the 32-bit platform.

Physical Address Extension.
Functioning as a stop-gap solution
on the road to full 64-bit memory
addressing, Intel currently provides
IA-32 machines with a Physical
Address Extension (PAE) feature that
supports a wider 37-bit address. PAE
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provides the capability to address up to 128 GB of
physical RAM. Virtual addresses remain 32-bits
when PAE is active, but it requires 8-byte PTEs and a
novel, 3-level address Page Directory structure,
which is illustrated in Figure 2 for translating 32-bit
virtual addresses into 37-bit physical addresses.

When a machine is booted in PAE mode, the
Windows Server 2003 operating system builds PTEs
and Page Directories in the proper format to support
extended addressing. Individual process address
spaces are still limited to 4 GB in size when Windows
Server 2003 runs in PAE mode, so utilizing physical
memory above 4 GB can be challenging, as discussed
in more detail below. Because 64-bit PAE PTEs con-
sume twice the amount of space as conventional 32-bit
PTEs, enabling PAE mode should be restricted to those
configurations where more than 4 GB of RAM is
installed and PAE-mode is required to address the
physical RAM installed above the 4 GB line.

PAE is an interim fix, a pit stop on the road
towards full 64-bit addressing in Intel hardware. As a
stop-gap solution, it has an element of deja vu about
it. It bears an uncanny resemblance to interim
actions taken by other processor manufacturers for
families of machines that similarly evolved from 16 or
24-bit machines to 32-bit addresses, and ultimately
to today’s 64-bit machines. In the IBM mainframe
world, there was a prolonged focus on Virtual Stor-
age Constraint Relief (VSCR) for its popular 24-bit
OS/360 hardware and software in almost every
subsequent release of new hardware and software
that IBM produced from 1980 to the present day. The

popular book The Soul of a New Machine [2],
chronicled the development of Data General’s 32-bit
address machines to keep pace with the Digital
Equipment Corporation’s 32-bit Virtual Address
Extension (VAX) of its original 16-bit minicomputer
architecture. Even though today’s hardware and
software engineers are hardly ignorant of the relevant
past history, they are still condemned to repeat the
cycle of delivering stopgap solutions that provide a
modicum of virtual memory constraint relief until the
next major architectural step forward is taken.

Process virtual address spaces.
The Windows operating system constructs a

separate virtual memory address space on behalf of
each running process, potentially addressing up to 4
GB of virtual memory on 32-bit machines. Each 32-
bit process virtual address space is divided into two
equal parts, as depicted in Figure 3. The lower 2 GB
of each process address space consists of private
addresses associated with that specific process only.
This 2 GB range of addresses refers to pages that can
only be accessed by threads running in that process
address space context. Each per process virtual
address space can range from 0x0001 0000 to
address 0x7fff ffff, spanning 2 GBs, potentially. (The
first 64K addresses are protected from being ac-
cessed - it is possible to trap many common
programming errors that way.) Each process gets its
own unique set of user addresses in this range.
Furthermore, no thread running in one process can
access virtual memory addresses in the private range
that is associated with another process. As it ex-

FIGURE 2. VIRTUAL ADDRESS TRANSLATION IN PAE-MODE.



ecutes, a process allocates virtual memory from its
user address space for code and data structures of
all types.

The 2 GB upper limit on the size of a user-mode
process virtual address space can be a constraint for
a variety of application programs. How to recognize
those processes that are affected and what actions
can be taken to relieve their capacity constraints is
the focus of this discussion. One initial complication
is that it is seldom possible for a process to allocate
its complete virtual memory range. This is due to
fragmentation that occurs because virtual memory is
allocated and de-allocated in non-uniform chunks.
Because of this fragmentation, a virtual memory
allocation request by a process can fail before the 2
GB limit on addressability is completely exhausted.

A process that allocates virtual memory, but
neglects to free it, suffers from a memory leak, a
program bug that will eventually exhaust the supply
of virtual memory available to a process. Application
programs with virtual memory leaks will not be
discussed any further here, but please refer to an
earlier version of this paper for a full account of their
detection and diagnosis [4].

Since the operating system builds a unique
address space for every process, Figure 4 is perhaps
a better picture of what User virtual address spaces
look like. Notice that the System portion of each
process address space is identical. One set of System
Page Table Entries (PTEs) maps the System portion of
the virtual address space for every process. Because
System addresses are common to all processes, they
offer a convenient way for processes to communicate
with each other, when necessary.

Shared system addresses
The upper half of each per process address space

in the range of '0x8000 0000' to '0xffff ffff' consists of
system addresses common to all virtual address
spaces. All running processes have access to the
same set of addresses in the system range. This feat
is accomplished by combining the system's page
tables with each unique per process set of page
tables. Commonly addressable system virtual
memory locations play an important role in various
forms of interprocess communication, or IPC. Win32
API functions can be used to allocate portions of
commonly addressable system areas to share data
between two or more distinct processes. For example,
the mechanism Windows Server 2003 uses that
allows multiple process address spaces to access
common runtime modules known as Dynamically
Linked Libraries (DLLs) utilizes this form of shared
memory addressing. (DLLs are library modules that
contain subroutines and functions which can be
called dynamically at run-time, instead of being
linked statically to the programs that utilize them.)

User mode threads running inside a process
cannot directly address memory locations in the
system range because system virtual addresses are
allocated using Privileged mode. This restricts
memory access to kernel threads that run in Privi-
leged mode. This is a form of security that restricts
access to system memory to authorized kernel
threads. When an application execution thread calls
a system function, it transfers control to an associ-
ated kernel mode thread, and, in the process,
routinely changes the execution state from User
mode to Privileged. It is in this fashion that an
application thread gains access to system virtual
memory addresses.

System virtual memory constraints
It is entirely possible for virtual memory in the

system range to be exhausted. It is also possible for
one of the four major system memory pools to reach

FIGURE 4.  USER PROCESSES SHARE THE SYSTEM PORTION OF THE
4 GB VIRTUAL ADDRESS SPACE.

FIGURE 3.  THE 4 GB ADDRESS SPACE LAYOUT USED IN 32-BIT
INTEL-COMPATIBLE MACHINE.



its maximum allocation level before the full range of
system virtual memory addresses is exhausted.
There are two sets of circumstances in 32-bit Win-
dows where concerns about running out of system
virtual memory are heightened. These are (1) Termi-
nal Server machines intended to support large
numbers of User mode processes and threads and (2)
machines booted with the /3GB option that extends
the User private area to 3 GB, but shrinks the
system area down to 1 GB.

The shared system address range is used mainly
to store data areas for the following four components
of the operating system:

• The system file cache that holds segments of
recently accessed file system objects. The initial
size of the file cache in 32-bit Windows is 512
MB in Windows Server 2003, but can extend to
about 960 MB, all of which is allocated on
demand.

• System PTEs, which are necessary to map
system pages into physical memory. System
PTEs are used to map any virtual memory
pages allocated in the system area. The main
consumers of PTEs are I/O buffers, including
those used by high resolution video cards. The
stacks for kernel-mode threads are also allo-
cated from the System PTE pool. The OS
earmarks about 660 MB for the pool of System
PTEs, but if virtual memory is available the pool
maximum can be extended to 900 MB, or more.

• The Nonpaged Pool where data structures
accessed by kernel and driver functions that
must always be resident in physical memory
are stored. Nonpaged pool structures include
TCP/IP session-oriented connection data, I/O
buffers of all kinds, and kernel stacks (i.e.,
working storage) for kernel-mode threads. By
default, the initial maximum size of the
Nonpaged pool that the OS calculates is 256
MB.

• The Paged Pool where data structures that can
be paged out are stored. The initial maximum
size of the Paged pool that the OS calculates is
normally 512 MB, but if virtual memory is
available the Paged Pool maximum can be
extended to 650 MB, or more.

Operating system and driver resident code and the
system's Hyperspace, a work area used by the operat-
ing system's Memory Manager, also occupy some
amount of system area virtual memory, but these are
usually more limited in size.

It is a mistake to think of these four major system
pools as being essentially static in size. Adding up
the potential size of these four major system memory
pools, it is readily apparent that the system's virtual
memory requirements would exceed 2 GB, assuming all
the virtual memory earmarked for these pools could
actually be allocated. At initialization, the operating
system calculates preset allocation targets for the size
of these shared data areas in the system range, with

room left over for several designated overflow areas.
These initial allocations are preliminary. Over time, as
system virtual memory allocations occur, the OS
manages its remaining free memory locations dy-
namically, servicing memory allocation requests that
point to the Nonpaged or Paged pool on a first-come,
first-served basis until all free memory in the system
range is ultimately allocated. Thus, by design,
running out of virtual memory in the system range is
a distinct possibility.

When operating system functions exhaust the
amount of virtual memory available for System PTEs
or data areas in either the Nonpaged or Paged pools,
the results are usually catastrophic. When there are
no free system PTEs available, the OS will refuse to
allocate additional virtual memory within the system
range. If either the Nonpaged or Paged pools is
exhausted, system functions that need working
storage cannot allocate virtual memory. System
functions that fail due to a shortage of virtual
memory usually result in a system crash - the
dreaded blue screen of death in Windows. In con-
trast, note that a shortage of virtual memory for the
file cache is seldom catastrophic, although such a
shortage could manifest itself as a severe perfor-
mance problem.

In the case of extreme virtual memory shortages in
the system range, the fatal memory allocation failure
is apt to have the appearance of being randomly
distributed across any of the stressed data areas,
something that also complicates identification and
diagnosis of the problem. Troubleshooting the
problem will normally require viewing a crash dump,
where the evidence of a virtual memory constraint is
usually clear and unambiguous.

There are several tuning parameters that are also
available to offer "hints" to the operating system in
order to handle situations where one specific pool
tends to run out of space before the others do. The
operating system also provides performance counters
that can assist you in setting these configuration
parameters. The associated performance counters
that track virtual memory usage in the system range
are also discussed below.

Terminal Server. Because they require system
area storage to support large numbers of User mode
processes and threads, large Terminal Server ma-
chines are among the most likely workloads to
encounter a shortage of system area virtual memory.
Each desktop process that Terminal Server executes
requires a corresponding kernel mode thread, so the
virtual memory area devoted to the pool of System
PTEs can become depleted. Another shared system
memory construct is the session space where data
structures that are shared by desktop processes are
stored. Session space is usually of modest size on a
typical server. However, Terminal Server machines,
where multiple sessions are supported, are a notable
exception. In Terminal Server, it is necessary to store
global data structures shared by all the processes in



the session in the system area. Session space global
data structures include an individual copy of the
Win32k.sys kernel mode Windows driver, the session
desktop, windows, security tokens, and other objects
unique to each User session. Terminal Server machines
may also rely on the effectiveness of the system file
cache to meet performance requirements.

/3GB boot option. When you use the /3GB boot
option to extend the size of the User private address
range to 3 GB, the system area is shrunk in half to 1
GB. This is the other scenario that most frequently
leads to virtual memory shortages in the system
area.

Virtual memory Commit Limit
The Commit Limit is an upper limit on the total

number of virtual memory pages the operating
system will allocate. When the system is up against
its Commit Limit, no more requests for virtual
memory can be honored. This is usually catastrophic
for the process that encounters this limitation.
Fortunately, this is a straightforward problem that is
easy to monitor and easy to anticipate - up to a
point. Servers with only 1-2 GB of RAM installed are
liable to run up against the virtual memory Commit
Limit before the virtual memory constraints imposed
by the 32-bit architecture are manifest. Programs
with memory leaks, a bug that refers to programs
that allocate virtual memory continuously, but fail to
release it subsequently, are also apt to be caught by
the Commit Limit.

The operating system builds page tables on behalf of
each process that is created. A process's page tables get
built on demand as virtual memory locations are
allocated, potentially mapping the entire virtual process
address space range. The Win32 VirtualAlloc API call
provides both for reserving contiguous virtual address
ranges and committing specific virtual memory ad-
dresses. Reserving virtual memory does not trigger
building page table entries because you are not yet
using the virtual memory address range to store data.
Reserving a range of virtual memory addresses is
something your application might want to do in
advance for a data file intended to be mapped into
virtual storage. Only later when the file is being ac-
cessed are those virtual memory pages actually
allocated (or committed).

In contrast, committing virtual memory addresses
causes the Virtual Memory Manager to fill out a page
table entry (PTE) to map the address into RAM. Alter-
natively, a PTE contains the address of the page on one
or more paging files that are defined that allow virtual
memory pages to spill over onto disk. Any unreserved
and unallocated process virtual memory addresses are
considered free.

Commit Limit
The Commit Limit is the upper limit on the total

number of page table entries (PTEs) the operating
system will build on behalf of all running processes.
The virtual memory Commit Limit prevents the

system from building a page table entry (PTE) for a
virtual memory page that cannot fit somewhere in
either RAM or the paging files.

The Commit Limit is the sum of the amount of
physical memory plus the allotted space on the
paging files. When the Commit Limit is reached, it is
no longer possible for a process to allocate virtual
memory. Programs making routine calls to
VirtualAlloc to allocate memory will fail.

Paging file extension
Before the Commit Limit is reached, Windows

Server 2003 will alert you to the possibility that
virtual memory may soon be exhausted. Whenever a
paging file becomes 90% full, a distinctive warning
message is issued to the Console. A System Event log
message with an ID of 26, illustrated in Figure 5, is
also generated that documents the condition.

Following the instructions in the message directs
you to the Virtual Memory control (see Figure 6) from
the Advanced tab of the System applet in the Control

Panel where additional paging files can be defined or
the existing paging files can be extended (assuming
disk space is available and the page file does not
already exceed 4 GB).

Windows Server 2003 creates an initial paging file
automatically when the operating system is first
installed. The default paging file is built on the same
logical drive where the OS is installed. The initial
paging file is built with a minimum allocation equal
to 1.5 times the amount of physical memory. It is
defined by default so that it can extend to approxi-
mately two times the initial allocation.

The Virtual Memory applet illustrated in Figure 6
allows you to set initial and maximum values that
define a range of allocated paging file space on disk
for each paging file created.  When the system

FIGURE 5. OUT OF VIRTUAL MEMORY EVENT LOG ERROR MESSAGE.



appears to be running out of virtual memory, the
Memory Manager will automatically extend a paging
file that is running out of space, has a range defined,
and is currently not at its maximum allocation value.
This extension, of course, is also subject to space
being available on the specified logical disk. The
automatic extension of the paging file increases the
amount of virtual memory available for allocation
requests. This extension of the Commit Limit may be
necessary to keep the system from crashing.

It is possible, but by no means certain, that
extending the paging file automatically may have
some performance impact. When the paging file
allocation extends, it no longer occupies a contigu-
ous set of disk sectors. Because the extension
fragments the paging file, I/O operations
to disk may suffer from longer seek times.
On balance, this potential performance
degradation is far outweighed by availabil-
ity considerations. Without the paging file
extension, the system is vulnerable to
running out of virtual memory entirely and
crashing.

Note that a fragmented paging file is not
necessarily always a serious performance
liability. Because your paging files coexist
on physical disks with other application
data files, some disk seek arm movement
back and forth between the paging file and
application data files is unavoidable.
Having a big chunk of the paging file
surrounded by application data files may
actually reduce overall average seek
distances on your paging file disk. [3]

Monitoring virtual memory usage

Performance counters that track overall virtual
memory usage are available, as well as ones that
allow you to drill down to see the amount of virtual
memory allocated by process. These counters make it
possible to identify a process that is leaking virtual
memory or identify those machines that need more
RAM to perform well. Unfortunately, a number of
usage issues arise when using these counters to
assist in identifying 32-bit server machines encoun-
tering virtual memory constraints. Critical gaps in
the range of performance monitoring measurement
data available make it difficult to anticipate all the
varieties of virtual memory shortages that can occur.

One serious problem is that while current alloca-
tion levels to the major system pools can be
monitored using performance monitoring tools, the
maximum sizes of these are only available using
debugging tools. Another potential problem is that
system level measurements of virtual memory alloca-
tions cannot always be reconciled with the process level
measurements. A final concern is that the performance
counter that tracks the amount of space available for
system PTEs provides a measurement that is inconsis-
tent with the other system virtual memory usage
counters that are all reported in bytes.

Monitoring Committed Bytes
The Memory\Committed Bytes and

Memory\Commit Limit provide a convenient way to
determine if your system is running up against the
Commit Limit, as illustrated in Figure 7. It shows a 32-
bit Windows Server 2003 machine with 4 GB of RAM
predominantly configured to run Terminal Server User
sessions. As Users activate their sessions in the
morning, the number of Committed Bytes allocated
increases steadily. Committed Bytes starts to level off
after 10:00 AM, at which time there is still plenty of
room to accommodate additional virtual memory
allocations. The number of Committed Bytes never
comes close to exhausting the Commit Limit, which for

FIGURE 6. THE APPLET FOR CONFIGURING THE LOCATION AND SIZE
OF THE PAGING FILES.

FIGURE 7. MONITORING COMMITTED BYTES.



this system is about 12 GB. The large gap
between the upward trending Committed
Bytes shown in the foreground and the
static Commit Limit behind it is conve-
niently viewed as capacity headroom for
virtual memory growth that should permit
this workload to expand.

The situation illustrated in Figure 7 is
typical of a server configured with a combi-
nation of ample RAM and paging file space
where virtual memory growth is not likely to
be constrained by the virtual memory
Commit Limit. Ironically, because their
overall virtual memory growth is uncon-
strained by the Commit Limit, these are
precisely the same machines that can be
subject to fatal virtual memory shortages
when one of the system memory areas
within the 2 GB range allotted to system
virtual addresses is exhausted due to the
32-bit addressing constraint.

Monitoring system memory pool usage
Figure 8 reports the values for five system memory

pool allocation counters for the machine illustrated
in Figure 7. The following five counters report on
system virtual memory allocations:

• Pool Nonpaged Bytes

• Pool Paged Bytes

• System Code Total Bytes

• System Driver Total Bytes

• System Cache Resident Bytes

These five performance counters report the portion
of the overall number of Committed Bytes that are
associated with virtual memory allocations in the
system range.

As illustrated in Figure 8, the number of system
code and driver virtual bytes is usually minimal, and
can usually be safely dispensed with. The current
size of both the Nonpaged and Paged Pools should
both be monitored carefully. The Cache Resident
Bytes counters tracks the current usage of physical
RAM by the file cache function, so it is a physical
memory allocation counter that is here grouped with
counters that measure virtual memory usage. There
is a corresponding physical memory allocation
counter called Pool Paged Resident Bytes that reports
the number of allocated paged pool bytes that are
currently resident in physical memory. Since the
pages in Nonpaged Pool are always resident in
physical memory, one counter that tracks the size of
the Nonpaged pool is sufficient.

In this example machine illustrated in Figure 7
and 8, neither the Nonpaged or Paged pool is ap-
proaching its maximum size. Because the Paged Pool
and Nonpaged Pools are dynamically re-sized as
virtual memory in the system range is allocated, it is
not always easy to pinpoint exactly when you have
exhausted one of these pools. Fortunately, there is at
least one server application, the file Server service,

that reports on Paged Pool memory allocation failures
when they occur. Non-zero values of the Server\Pool
Paged Failures counter indicate virtual memory
problems even for machines not primarily intended
to serve as network file servers.

Nonpaged and paged pool maximums. Unfortu-
nately, there are no counters available that report
the maximum size of the Nonpaged and Paged pools,
so even the most careful monitoring procedures leave
you exposed to fatal virtual memory shortages
striking by surprise. To determine the Nonpaged and
paged pool maximum sizes, you need to run the
system debugger.

The kernel debugger !vm command extension
provides more detail than the performance counters
do in tracking how virtual memory is allocated. You
can access the maximum allocation limits of these
two pools and monitor current allocation levels, as
illustrated in Listing 1.

The NonPagedPool Max and PagedPool Maximum
rows show the values for these two virtual memory
allocation limits. This information on virtual memory
usage is also useful in a post-mortem review of a
crash dump to determine if a critical shortage of
virtual memory was the source of the problem.

System PTEs  Another counter worth tracking in
this context is Free System Page Table Entries, which
reports the number of available system PTEs to
service new allocations. It is necessary to chart the
Free System Page Table Entries counter separately
from the five system virtual memory usage counters
shown in Figure 8 because it measures free space
available, rather than usage, as in Figure 10, which
is adapted from measurement data supplied by
Microsoft from a series of Terminal Server bench-
mark stress tests.

System PTEs are built and used by system func-
tions to address system virtual memory areas. They

FIGURE 8. MONITORING SYSTEM VIRTUAL MEMORY ALLOCATIONS BY POOL.



are allocated from a pool that is also used to service
allocations for the stacks of any kernel mode threads
that exist. When the system virtual memory range is
exhausted, the number of Free System PTEs drops to
zero and no more system virtual memory of any type
can be allocated. On 32-bit systems with large amounts
of RAM (1-2 GB, or more), it is also important to track
the number of Free System PTEs.

In Figure 9, Free System PTEs is tracked against
the current number of active Terminal Server User

above from Committed Bytes, the remainder consists
roughly of virtual memory allocations made by
private area process address spaces. In the machine
illustrated in Figures 7 and 8, the five system virtual
memory allocation counters account for about 400
MB of the 2.84 GB Committed Bytes total reported at
the end of the interval. This indicates that various
running process address spaces are responsible for
allocating the remaining 2.44 GB of virtual memory.
Unfortunately, a measurement anomaly associated
with accounting for virtual memory allocations that
are performed on behalf of shared program compo-
nents makes it difficult to account for virtual memory
allocations on a process by process basis in a
straightforward manner. This measurement anomaly
at the process address space level is discussed in the
next section.

Accounting for process memory usage
When a memory leak occurs, or the system is

otherwise running out of virtual memory, it is often
useful to drill down to the individual process. There
are three counters at the process level that describe
how each process is allocating virtual memory. These
are Process(n)\Virtual Bytes, Process(n)\Private
Bytes, and Process(n)\Pool Paged Bytes.

Process(n)\Virtual Bytes shows the full extent of
each process's virtual address space, including
shared memory segments that are used to map data
files and shareable image file DLLs in memory. The
Process(n)\Working Set bytes counter, in contrast,
tracks how many pages in RAM that virtual memory
associated with the process currently has allocated.
An interesting measurement anomaly is that
Process(n)\Working Set bytes is often greater than
Process(n)\Virtual Bytes. This is due to the way

lkd> !vm
*** Virtual Memory Usage ***
Physical Memory:    130927   (  523708 Kb)
Page File: \??\C:\pagefile.sys
Current:    786432Kb Free Space:    773844Kb
Minimum:    786432Kb Maximum:      1572864Kb

Available Pages:     73305   (  293220 Kb)
ResAvail Pages:      93804   (  375216 Kb)
Locked IO Pages:       248   (     992 Kb)
Free System PTEs:   205776   (  823104 Kb)
Free NP PTEs:        28645   (  114580 Kb)
Free Special NP:         0   (       0 Kb)
Modified Pages:        462   (    1848 Kb)
Modified PF Pages:     460   (    1840 Kb)
NonPagedPool Usage:   2600   (   10400 Kb)
NonPagedPool Max:    33768   (  135072 Kb)
PagedPool 0 Usage:    2716   (   10864 Kb)
PagedPool 1 Usage:     940   (    3760 Kb)
PagedPool 2 Usage:     882   (    3528 Kb)
PagedPool Usage:      4538   (   18152 Kb)
PagedPool Maximum:   138240  (  552960 Kb)
Shared Commit:        4392   (   17568 Kb)
Special Pool:            0   (       0 Kb)
Shared Process:       2834   (   11336 Kb)
PagedPool Commit:     4540   (   18160 Kb)
Driver Commit:        1647   (    6588 Kb)
Committed pages:     48784   (  195136 Kb)
Commit limit:       320257   ( 1281028 Kb)

LISTING 1. OUTPUT FROM THE !VM DEBUGGER COMMAND
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FIGURE 9. FREE SYSTEM PTES IN A VIRTUAL MEMORY-CONSTRAINED TERMINAL SERVER BENCHMARK
WORKLOAD.

sessions. Free System PTEs
are plotted on a logarithmic
scale as the number of active
Terminal Server User sessions
is increased during the course
of this benchmark. When the
number of free System PTEs
drops below 100, it is no
longer possible to add more
Users to the system. In fact, it
is apparent that some pro-
cesses and threads associated
with currently active Sessions
start to fail when the pool
where System PTEs are allo-
cated becomes depleted.
Processor utilization vs. the
number of Users is plotted on
the right y-axis to illustrate the
progress of the benchmark. [5]

After subtracting the five
system virtual memory
allocation counters discussed



memory accounting is performed for shared DLLs, as
discussed further below.

 If a process is leaking memory, you should be
able to tell by monitoring Process(n)\Private Bytes or
Process(n)\ Pool Paged Bytes, depending on the type
of memory leak. If the memory leak is allocating, but
not freeing, virtual memory in the process's private
region, this will be reflected in monotonically increas-
ing values of the Process(n)\Private Bytes counter. If
the memory leak is allocating, but not freeing, virtual
memory in the system range, this will be reflected in
monotonically increasing values of the
Process(n)\Pool Paged Bytes counter.

Shared DLLs
Modular programming techniques encourage

building libraries containing common routines that
can be shared easily among running programs. In
the Microsoft Windows programming environment,
these shared libraries are known as Dynamic Link
Libraries, or DLLs, and they are used extensively by
Microsoft and other developers. The widespread use
of shared DLLs complicates the bookkeeping that is
done to figure out both the number of virtual pages
and physical memory-resident pages associated with
each process working set.

The OS counts all the resident pages associated
with shared DLLs as part of every process working
set that has the DLL loaded. All the resident pages of
the DLL, whether the process has recently accessed
them or not, are counted in the process working set.
Processes can be charged for resident DLL pages
they may never have touched, but at least this
double counting is performed consistently across all
processes that have the DLL loaded.

Unfortunately, this working set accounting proce-
dure does make it difficult to account precisely for

how physical memory is being used. It also leads to a
measurement anomaly that is illustrated in Figure
10. For example, because the resident pages associ-
ated with shared DLLs are included in the process
working set, it is not unusual for a process to acquire
a working set larger than the number of Committed
virtual memory bytes that it has requested. Notice
the number of processes in Figure 10 with more
working set bytes (Mem Usage) than Committed
Virtual bytes (VM Size). None of the virtual memory
Committed bytes associated with shared DLLs are
included in the Process Virtual Bytes counter even
though all the resident bytes associated with them
are included in the Process Working set counter.

Trying to account for virtual memory usage at the
process level leads to another measurement
anomaly. For the machine shown in Figures 7 and 8,
the number of Committed Bytes not associated with
system virtual memory was calculated as approxi-
mately 2.4 GB. When you add up the number of
virtual bytes consumed by all processes - this is
readily accomplished by accessing the
Process(_Total)\Virtual bytes counter - it will likely
exceed the value of system-wide Committed Bytes
that is reported. Just as with the Process(*)\Working
set counter, it is not possible to break out which
processes account for virtual memory allocation
consistently due to double counting of shared
memory segments.

Figure 11 charts the Process(*)\Virtual Bytes
counter for only the 150 largest process virtual
addresses for the Terminal Server machine shown
previously in Figure 7 and 8 over a one hour period
beginning at 10:00 AM. Each bar in the chart repre-
sents the virtual byte count of an individual process
address space. The number of virtual bytes that are
shown allocated at the process level exceeds 10 GB
for these 150 active processes, which far exceeds the
Committed Bytes measurements for the same interval,
which were shown back in Figure 7 to be only about 4
GB. The whopping difference between the expected
measurement and the actual ones is disconcerting, to
say the least.

Extended virtual addressing
The Windows 32-bit server operating systems

support several extended virtual addressing options
suitable for large Intel machines configured with 4
GB or more of RAM. These include:

• /3GB Boot switch, which allows the definition
of process address spaces larger than 2 GB, up
to a maximum of 3 GB.

• Physical Address Extension (PAE), which
provides support for 37-bit physical addresses
on Intel Xeon 32-bit processors. With PAE
support enabled, 32-bit Intel processors can be
configured to address as much as 128 GB of
RAM.

• Address Windowing Extensions (AWE), which
permits 32-bit process address spaces access to

FIGURE 10. WORKING SET BYTES COMPARED TO VIRTUAL BYTES.



physical addresses outside their 4 GB virtual
address limitations. AWE is used most fre-
quently in conjunction with PAE

Any combination of these extended addressing
options can be deployed, depending on the circum-
stances. Under the right set of circumstances, one or
more of these extended addressing functions can
significantly enhance performance of 32-bit applica-
tions, which, however, are still limited to using 32-bit
virtual addresses. These extended addressing options
relieve the pressure of the 32-bit limit on
addressability in different ways that are each dis-
cussed in more detail below. But, they are also
subject to the addressing limitations posed by 32-bit
virtual addresses. Ultimately, the 32-bit virtual
addressing limit remains a barrier to performance
and scalability.

Extended process private virtual addresses
The /3GB boot switch extends the per process

private address range from 2 to 3 GB. Windows Server
2003 permits a different partitioning of user and
system addressable storage locations using the /3GB
boot switch. This extends the private User address
range to 3 GB and shrinks the system area to 1 GB, as
illustrated in Figure 12. The /3GB switch supports an
additional subparameter /userva=<SizeInMB>, where
SizeinMB can be any value for the size of the largest
User virtual address between 2048 and 3072.

Only applications compiled and linked with the
IMAGE_FILE_LARGE_ADDRESS_AWARE switch en-
abled can allocate a private address space larger
than 2 GB. Applications that are Large Address
Aware include MS SQL Server, MS Exchange, MS
Internet Information System (IIS), Oracle, and SAS.

For example, there is a database-oriented process
called store.exe that is a central component of the
MS Exchange Server application. The store.exe
process in Exchange corresponds to the MS Ex-
change Information Store, the component that
manages a repository of mail folders, and other
messaging content. Like other data-intensive server
applications, the store process relies on memory-
resident caching of frequently accessed objects to
avoid disk I/O and improve performance. The store
process will frequently benefit from running with the
/3GB switch on because it can then acquire approxi-
mately 1 GB more private virtual memory for its
internal data cache. In fact, Microsoft recommends
using the /3GB switch with userva=3030 for any
Exchange Server machine with at least 1 GB of RAM.
See, for example, KB article 810371 entitled "Using
the /Userva switch on Windows Server 2003-based
computers that are running Exchange Server" posted
on the Microsoft TechNet web site.

FIGURE 11. THE SUM OF PROCESS(*)\VIRTUAL BYTES COUNTERS CAN FAR EXCEED THE VALUE OF THE MEMORY\COMMITTED BYTES COUNTER SHOWN
IN FIGURE 7 FOR THE SAME MACHINE.



Extending the user private area using the /3GB
switch also shrinks the size of the system virtual
address range. This can have serious drawbacks.
While the /3GB option allows an application to grow
its private virtual addressing range, it forces the
operating system to squeeze into a narrower range of
addresses. When the /3GB boot option is employed,
the initial default allocations of the four main system
memory pools are halved. In certain circumstances,
this narrower range of system virtual addresses may
not be adequate, and critical system functions can
easily be constrained by virtual addressing limits.
These concerns are discussed in more detail in the
section entitled “Fine-tuning system virtual memory.”

PAE
The Physical Address Extension (PAE) enables

applications to address more than 4 GB of physical
memory. It is supported by most current Intel proces-
sors running Windows Server 2003 Enterprise Edition
or Windows 2000 Advanced Server. Instead of 32-bit
addressing, PAE extends physical addresses to use 37
bits, allowing machines to be configured with as much
as 128 GB of RAM.

When PAE is enabled, the operating system builds
an additional virtual memory translation layer that is

used to map 32-bit virtual addresses into this 128
GB physical address range, as illustrated in Figure 2.
PAE utilizes 8-byte PTEs that are wide enough to
contain the necessary extra address bits. A /PAE
boot.ini switch informs the operating system to build
PTEs in the format required for extended addressing.
On newer server machines that support hot-add
memory, Windows Server 2003 will boot in PAE mode
automatically to ensure continuous operation if
physical memory ever increases above the 4 GB
upper limit for standard addressing.

Server application processes running on machines
with PAE enabled are still limited to using 32-bit
virtual addresses. However, 32-bit server applica-
tions facing virtual memory addressing constraints
can exploit PAE in two basic ways:

1. They can expand sideways by deploying mul-
tiple application server processes. Both MS SQL
Server 2000 and IIS 6.0 support sideways
scalability with the ability to define and run
multiple application processes. Similarly, a
Terminal Server machine with PAE enabled can
potentially support the creation of more process
address spaces than a machine limited to 4 GB
physical addresses.

2. They can indirectly access physical memory
addresses outside their 4 GB limit using the
Address Windowing Extensions (AWE) API calls.
Using AWE calls, server applications like SQL
Server and Oracle can allocate database buffers
in physical memory locations outside their 4 GB
process virtual memory limit and manipulate
them.

The PAE support the OS provides maps 32-bit
process virtual addresses into the 37-bit physical
addresses that the processor hardware supports. An
application process, still limited to 32-bit virtual
addresses, need not be aware that PAE is active.
When PAE is enabled, operating system functions
can only use addresses up to 16 GB. Only applica-
tions using AWE can access RAM addresses above 16
GB to the 128 GB maximum. Large Memory Enabled
(LME) device drivers can also directly address buffers
above 4 GB using 64-bit pointers. Direct I/O for the full
physical address space is supported if both the devices
and drivers support 64-bit addressing. For devices and
drivers limited to 32-bit addresses, the operating
system is responsible for copying buffers located in
physical addresses greater than 4 GB to buffers in RAM
below the 4 GB line than can be directly addressed
using 32-bits.

Figure 13 illustrates an expands sideways sce-
nario for SQL Server 2000 where three named
instances of the sqlservr.exe process are running
concurrently on a machine configured with 12 GB of
RAM. When the machine is booted with the /3GB
option, each individual SQL Server instance can
expand to use 3 GB of RAM. PAE-mode addressing
allows multiple 32-bit 4 GB virtual memory process
address spaces to be loaded anywhere in physical

FIGURE 12.  THE /USERVA BOOT SWITCH TO INCREASE THE SIZE OF
THE USER VIRTUAL ADDRESS RANGE.



memory and execute. Each 4 GB private address
space allows for a 1 GB range of virtual memory
addresses where operating system code and data
structures reside. Each SQL Server process address
space is shown pointing to the same common OS
pages resident in physical memory.

While expanding sideways by defining more process
address spaces is a straightforward solution to virtual
memory addressing constraints in selected circum-
stances, it is not a general purpose solution to the
problem. When a single SQL Server database process is
virtual memory-constrained running with no more than
a 3 GB User-mode private area, extensive application
changes  may be required to partition the database
across multiple instances of SQL Server. Moreover, not
every processing task can be readily partitioned into
subtasks that can be parceled out to multiple pro-
cesses. While PAE brings extended physical addressing,
there are no additional hardware-supported functions
that extend interprocess communication (IPC). IPC
functions in Windows rely on operating system shared
memory, which is still constrained by 32-bit address-
ing. Machines with PAE enabled often run better
without the /3GB option because the operating
system range is subject to becoming rapidly depleted
otherwise.

PAE is required if want to enable the OS support
for Cache Coherent Non-Uniform Memory Architec-
ture (known as ccNUMA or sometimes NUMA, for
short) machines, but it is not enabled automatically.
On both AMD64 and x64-based systems running in
long mode, PAE is required, is enabled automatically,
and cannot be disabled.

AWE
The Address Windowing Extension (AWE) is an API

that allows programs to address physical memory
locations outside of their 4 GB virtual addressing
range. AWE is used by applications in conjunction
with PAE to extend their addressing range beyond
32-bits. Since process virtual addresses remain
limited to 32-bits, AWE is a marginal solution that
should be deployed cautiously. It has many pitfalls,
limitations, and potential drawbacks.

The AWE API calls maneuver around the 32-bit
address restriction by placing responsibility for
virtual address translation into the hands of an
application process. AWE works by defining an in-
process buffering area called the AWE region that is
used to map allocated physical pages dynamically to
32-bit virtual addresses. See Figure 14 for an illustra-
tion of the three step procedure necessary to use AWE,
which is similar to managing overlay structures.

1. The first step is to allocate an AWE region using
nonpaged physical memory within the process
address space by making a call to
AllocateUserPhysicalPages in the AWE API.
AllocateUserPhysicalPages locks down the pages
in the AWE region and returns a Page Frame
array structure that is the normal mechanism
the operating system uses to keep track of
which physical memory pages are mapped to
which process virtual address pages. (An
application must have the Lock Pages in
Memory User Right to use this function.)
Initially, of course, there are no virtual ad-
dresses mapped to the AWE region.

2. Then, the AWE application reserves physical
memory (which may or not be in the range
above 4 GB) using a call to VirtualAlloc, specify-
ing the MEM_PHYSICAL and MEM_RESERVE
flags. Because physical memory is being
reserved, the operating system does not build
page tables entries (PTEs) to address these data
areas. (Because physical memory addresses are
requested, User mode threads in the process
cannot directly access these physical memory
addresses. (Only authorized kernel threads
can.)

3. Next, the process requests that the physical
memory that was acquired be mapped to the
AWE region using the MapUserPhysicalPages
function. Once physical pages are mapped to
the AWE region, the region is now addressable
by User mode threads running inside the
process.

Using the AWE API calls, multiple sets of physical
memory blocks, extending to 128 GB, can be mapped
dynamically, one at a time, into the AWE region. The
application, of course, must keep track of which set
of physical memory buffers is currently mapped to
the AWE region, what set is currently required to
handle the current request, and perform virtual

FIGURE 13. EXPANDING SIDEWAYS BY RUNNING MULTIPLE INSTANCES
OF 32-BIT SQL SERVER 2000.



address unmapping and mapping as necessary to
ensure addressability to the right physical memory
locations.

In this example of an AWE implementation, the
User process allocates four large blocks of physical
memory that are literally outside the address space
and one AWE region of the same size within the process
virtual address space. Because the physical blocks of
RAM are the same size as the AWE region of virtual
memory, the AWE call to MapUserPhysicalPages is
used one physical address memory block at a time.
In the example, the AWE region and the reserved
physical memory blocks that are mapped to the AWE
region are all the same size, but this is not required.
Any sort of overlay structure can be implemented.
For instance, there could be more than one AWE
region, and each AWE region does not have to be the
same size. Nor do physical memory blocks have to
match the size of the AWE region. Applications can
map multiple reserved physical memory blocks to the
same AWE region, provided the AWE region address
ranges they are mapped to are distinct and do not
overlap.

In this example the User process private address
space extends to 3 GB. It is desirable for processes
using AWE to acquire an extended private area so
that they can create a large enough AWE mapping
region to manage physical memory overlays effectively.
Obviously, frequent unmapping and remapping of

physical blocks would slow down memory access
considerably. The AWE mapping and unmapping
functions, which involve binding physical addresses to
a process address space's PTEs, must be synchronized
across multiple threads executing on multiprocessors.
Compared to performing physical I/O operations to
AWE-enabled access to memory-resident buffers, of
course, the speed-up in access times using AWE is still
considerable.

AWE limitations. Besides forcing User processes
to develop their own dynamic memory management
routines, AWE has other limitations. For example,
AWE regions and their associated reserved physical
memory blocks must be allocated in pages. An AWE
application can determine the page size using a call
to GetSystemInfo. Physical memory can only be
mapped into one process at a time. (Processes can
still share data in non-AWE region virtual ad-
dresses.) Nor can a physical page be mapped into
more than one AWE region at a time inside the same
process address space. These limitations are appar-
ently due to system virtual addressing constraints,
which are significantly more serious when the /3GB
switch is in effect. Executable code (.exe, .dll, files,
etc.) can be stored in an AWE region, but not executed
from there. Similarly, AWE regions cannot be used as
data buffers for graphics device output. Each AWE
memory allocation must also be freed as an atomic

FIGURE 14. AN AWE IMPLEMENTATION ALLOWING THE PROCESS TO ADDRESS LARGE AMOUNTS OF PHYSICAL MEMORY.



unit. It is not possible to free only part of an AWE
region.

The physical pages allocated for an AWE region
and associated reserved physical memory blocks are
never paged out - they are locked in RAM until the
application explicitly frees the entire AWE region (or
exits, in which case the OS will clean up automati-
cally). Applications that use AWE must be careful not
to acquire so much physical memory that other
applications can run out of memory to allocate. If too
many pages in memory are locked down by AWE
regions and the blocks of physical memory reserved
for the AWE region overlays, contention for the RAM
that remains  can lead to excessive paging or prevent
creation of new processes or threads due to lack of
resources in the system area's Nonpaged Pool.

Application support
Database applications like MS SQL Server, Oracle

and MS Exchange that rely on memory-resident
caches to reduce the amount of I/O operations they
perform are susceptible to running out of address-
able private area in 32-bit Windows. These server
applications all support the /3GB boot switch for
extending the process private area. Support for PAE
is transparent to these server processes, allowing
both SQL Server 2000 and IIS 6.0 to scale sideways.
Both SQL Server and Oracle can also use AWE to
gain access to additional RAM beyond their 4 GB
limit on virtual addresses.

Scaling sideways
SQL Server 2000 can scale sideways, allowing you

to run multiple named instances of the sqlserver
process, as illustrated in Figure 13. A white paper
entitled "Microsoft SQL Server 2000 Scalability
Project-Server Consolidation" available at http://
msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnsql2k/html/sql_asphosting.asp
documents the use of SQL Server and PAE to sup-
port multiple instances of the database process

the best use possible of potentially scarce virtual
memory resources.

IIS 6.0 features a kernel mode driver, http.sys,
which is invoked directly whenever conventional
HTTP Method calls are received and processed by the
TCP/IP networking protocol stack. The HTTP kernel-
mode driver eschews the standard system file cache,
which is virtual-memory constrained in 32-bit
Windows, in favor of a dedicated cache that can be
addressed only using the physical memory addresses
of the HHTP Response objects stored there. Using
physical addressing mode exclusively allows the
HTTP Response Cache to grow in size unconstrained
by the system’s virtual memory addressing limita-
tions. Not only can the HTTP Response Cache grow
larger than the 960 MB limit on the system file
cache's virtual addressing range, it can do so without
utilizing any of the limited range of virtual addresses
reserved for other system memory pools. In cases
where a fully rendered HTTP Response object is
already available in the HTTP Response Cache, IIS
6.0 can respond to a Get Request without ever
having to leave kernel mode or suffer a context
switch to a User mode processing thread.

Web applications written using either Microsoft's
Active Server Pages scripting extensions or the newer
ASP.NET runtime facilities cannot be trusted to
execute safely in kernel mode. IIS 6.0 supports a new
feature called Application Pools (also known as Web
Gardens) that queues ASP and ASP.NET requests to
a User mode server process called w3wp.exe for
execution. Figure 15 illustrates the ASP.NET ISAPI
filter that initiates ASP.NET processing inside a
w3wp runtime container process. The
aspnet_isapi.dll, which is loaded by the ISAPI inter-
face that IIS has supported for several generations, is
also shown inside w3wp, along with the .NET Frame-
work Common Language Runtime, mscoree.dll, that
links to the extensive set of runtime services the
.NET Framework provides. The aspx page containing
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FIGURE 15. THE APPLICATION SERVER ARCHITECTURE OF IIS 6.0.

address space, sqlservr.exe, on a
machine configured with 32 GB of
RAM. Booting with PAE, this server
consolidation project defined and ran
16 separate instances of MS SQL
Server. With multiple database
instances defined, it was no longer
necessary to use the /3GB switch to
extend the addressing capability of a
single SQL Server address space.

IIS 6.0. The IIS 6.0 application
server architecture supplies perhaps
the most flexible set of configuration
options available in any Windows
server application in the face of 32-
bit virtual memory constraints.
Figure 15 illustrates the most salient
features of the Microsoft Web server
architecture that is designed to make



the HTML that is necessary to render the page
properly and its corresponding code-behind execut-
able are also illustrated. (The .NET Framework 2.0
uses a slightly different mechanism than the .NET
Framework version 1 that merges the aspx page and
the code file at runtime.)

Web sites defined to IIS 6.0 can be assigned to run
in separate Application Pools, which correspond to
separate copies of the w3wp.exe container process.
Additional options are also available at the Applica-
tion Pool level to devote multiple worker processes to
execute the web site programs, as illustrated in
Figure 16. This set of multi-process options permits
great flexibility in allowing the web application to
expand sideways.

Exchange. Microsoft recommends that Exchange
2000 and 2003 use both the /3GB  and /userva
switches in boot.ini to allocate up to 3 GB of RAM for
the Exchange Information Store application (store.exe).
The store.exe process in Exchange is a database
application that maintains the Exchange messaging
data store. However, in Exchange 2000 store.exe will
not allocate much more than about 1GB of RAM unless
you make registry setting changes because the data-
base cache will allocate only 900 MB by default. This
value can be adjusted upward using the ADSI Edit tool
to set higher values for the
msExchESEParamCacheSizeMin and
msExchESEParamCacheSizeMax runtime parameters.

Both Exchange 2000 and 2003 will run on PAE-
enabled machines. However, Exchange 2000 doesn't
make any calls to the AWE APIs to utilize virtual
memory beyond its 4GB address space. Exchange
2003 checks the memory management configuration
when the store process starts. If the virtual memory
settings are not optimal for Exchange, an event 9665

Warning is written to the Application Event log. The
logic behind this virtual memory check is discussed
in KB article 815372 entitled, "How to optimize
memory usage in Exchange Server 2003," along with
suggestions for tuning Exchange to run well on
machines with 2 GB or more of RAM installed.

AWE Support
MS SQL Server. Using SQL Server 2000 with AWE

brings a load of special considerations. You must
specifically enable the use of AWE memory by an
instance of SQL Server 2000 Enterprise Edition by
setting the awe enabled option using the sp_configure
stored procedure. When an instance of SQL Server
2000 Enterprise Edition is run with awe enabled set to
1, The instance does not dynamically manage the
working set of the address space. Instead, the database
instance acquires nonpageable memory & holds all
virtual memory acquired at startup until it is shut
down.

Because the virtual memory the SQL Server
process acquires when it is configured to use AWE is
held in RAM for the entire time the process is active,
the max server memory configuration setting should
also be used to control how much memory is used by
each instance of SQL Server that uses AWE memory.

Oracle. AWE support in Oracle is enabled by
setting the AWE_WINDOW_MEMORY Registry
parameter. Oracle recommends that AWE be used
along with the /3GB extended User area addressing
boot switch. The AWE_WINDOW_MEMORY param-
eter controls how much of the 3 GB address space to
reserve for the AWE region, which is used to map
database buffers. This parameter is specified in bytes
and has a default value of 1 GB for the size of the
AWE region inside the Oracle process address space.

If AWE_WINDOW_MEMORY is set too high, there
might not be enough virtual memory left for other
Oracle database processing functions - including
storage for buffer headers for the database buffers, the
rest of the SGA, PGAs, stacks for all the executing
program threads, etc. As Process(Oracle)\Virtual Bytes
approaches 3GB, then out of memory errors can occur,
and the Oracle process can fail. If this happens, you
then need to reduce db_block_buffers and the size of
the AWE_WINDOW_MEMORY.

Oracle recommends using the /3GB option on
machines with only 4GB of RAM installed. With
Oracle allocating 3 GB of private area virtual
memory, the Windows operating system and any
other applications on the system are squeezed into
the remaining 1GB. However, according to Oracle,
the OS normally does not need 1GB of physical RAM
on a dedicated Oracle machine, so there are typically
several hundred MB of RAM available on the server.
Enabling AWE support allows Oracle to access that
unused RAM, perhaps grabbing as much as an extra
500MB of buffers can be allocated. On a machine
with 4 GB of RAM, bumping up db_block_buffers and

FIGURE 16. MULTIPLE PROCESSES CAN SERVICE ASP AND ASP.NET
WEB SITES IN IIS 6.0.



FIGURE 17. MEMORY MANAGEMENT POOL SIZING SETTINGS.

turning on the AWE_WINDOW_MEMORY setting,
Oracle virtual memory allocation may reach 3.5 GB.

SAS. SAS support for PAE includes an option to
place the Work library in extended memory to reduce
the number of physical disk I/O requests. SAS is
also enabled to run with the /3GB and can use the
extra private area addresses for SORT work

Fine-tuning System Virtual memory
The upper half of the 32-bit 4 GB virtual address

range is earmarked for System virtual memory
addresses. The system virtual address range is
limited to 2 GB, and using the /userva boot option it
can be limited even further to as little as 1 GB. On a
large 32-bit machine, it is not uncommon to run out of
virtual memory in the system address range. The
culprit could be a program that is leaking virtual
memory from the Paged Pool. Alternatively, it could be
caused by active usage of the system address range by
a multitude of important system functions, including
kernel threads, TCP session data, the file cache, and
many other normal functions. When the number of free
System PTEs reaches zero, no function can allocate
virtual memory in the system range. Unfortunately, you
can sometimes run out of virtual addressing space in
the Paged or Nonpaged Pools before all the System
PTEs are used up. When you run out of system virtual
memory addresses, whether due to a memory leak or
virtual memory creep, the results are usually cata-
strophic.

The system virtual memory range, 2 GB wide, is
divided into four major pools: the System PTEs, the
Nonpaged Pool, the Paged Pool, and the File Cache.
The size of the four main system area virtual memory
pools is determined initially based on the amount of
RAM. There are pre-determined maximum sizes of
the Nonpaged and Paged Pool, but there is no

guarantee that they will reach their predetermined
limits before the system runs out of virtual ad-
dresses. This is because a substantial chunk of
system virtual memory remains in reserve to be
allocated on demand - it depends on which memory
allocation functions requisition it first. Nonpaged and
Paged Pool maximum extents are defined at system
start-up, based on the amount of RAM that is
installed, up 256 MB for the NonPaged Pool and 512
MB for the Paged Pool. In addition, a 900 MB region
is earmarked for the pool where System PTEs are
allocation. Meanwhile, the file cache is granted an
initial virtual address range of 512 MB.

Using the /userva or /3GB boot options that
shrink the system virtual address range in favor of a
larger process private address range substantially
increases the risk of running out of system virtual
memory. For example, the /3GB boot option that
reduces the system virtual memory range to 1 GB
and cuts the default size of the Nonpaged and Paged
Pools in ½ for a given size RAM.

The operating system's initial pool sizing decisions
can also be influenced by a series of settings in the
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management key, as illustrated in
Figure 17.

Three settings are available, NonpagedPoolSize,
PagedPoolSize, and SystemPages, to specify explicitly
the size of the Nonpaged Pool, the Paged Pool, and the
System PTE pool, respectively. Using the Memory
performance monitoring counters, if you are able to
determine that the system is encountering a critical
shortage of virtual memory in any of these three pools,
the appropriate Registry setting can be used to boost
the initial size of the pool. Alternatively, you might base
your analysis on running the !vm debugger command
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TABLE 1. MEMORY MANAGEMENT REGISTRY SETTINGS

against the crash dump of a system stricken with a
critical shortage of virtual memory.

Rather than force you to partition the system area
precisely, you can also set the SystemPages,
NonpagedPoolSize, or PagedPoolSize settings to a -1
value (or 0xfffffff, since the Registry Editor does not
allow for signed integers), which instructs the operat-
ing system to allow the designated pool to grow as
large as possible. Note that setting more than one of

the three system memory pool sizing parameters to -
1 will backfire because the OS will no longer
understand which one of the pools needs to be the
largest.

A fourth setting, LargeSystemCache, is enabled by
default on Windows Server 2003 machines. When
LargeSystemCache is enabled, a 512 MB region of
virtual memory is initially allocated for the system
file cache, which is then allowed to extend into an
overflow area of virtual memory to a maximum size of
960 MB, assuming virtual memory is available.
Server applications like SQL Server, Oracle, Ex-
change and even Active Directory rely on their own
internal caches, utilizing the system file cache very
little. IIS 6.0 relies mainly on its dedicated kernel-
mode physical memory cache, but may supply some
load on the system file cache. If the main server
applications are not using the system file cache, then
LargeSystemCache can be set to 0, which minimizes
the initial allocation of the system file cache. This
allows the OS greater discretion in maximizing one of
the other system memory pools.

64-bit addressing
The problems discussed above where 32-bit

Windows applications are virtual memory-con-
strained vanish when 64-bit processors running
64-bit applications are deployed. The 64-bit architec-
tures available today allow massive amounts of
virtual memory to be allocated. Windows Server 2003
supports a 16 TB virtual address space for User
mode processes running in 64-bit mode. As in 32-bit
mode, this 16 TB address space is divided in half,
with User mode private memory locations occupying
the lower 8 TB and the operating system occupying
the upper 8 TB. Table 2 compares the virtual
memory addressing provided in 64-bit Windows to
32-bit machines in their default configuration.

On 64-bit systems, all operating system functions
are provided in native 64-bit code. The massive
amount of virtual memory available to operating
system functions eliminates the architectural con-
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* These are initial sizing requests, not hard limits
on the size of the Paged, Nonpaged Pools, and
System PTEs in Windows Server 2003.

TABLE 2. A COMPARISON OF VIRTUAL MEMORY ALLOCATIONS IN 64-
BIT TO 32-BIT SYSTEMS



straints that lead to critical virtual memory shortages
in the situations discussed above. The concerns
enumerated above simply evaporate. For example, in
the Terminal Server example illustrated in Figure 9,
space for Free System PTEs dropped to less than 100
when the benchmark workload reached 240 User
sessions. When the same Terminal Server workload
is moved to an x64 machine, the virtual memory
constraint is removed. As a result, the number of
Terminal Server User sessions could be increased
dramatically, in effect, until some other bottlenecked
resource in the configuration was manifest. In the
case of this specific workload, Microsoft reported that
processor limitations start to become evident when
double the number of Terminal Server User sessions
are executed.

The 64-bit machines arriving on the scene offer
a modicum of relief to virtual memory-constrained
32-bit applications that are LARGE_ADDRESS_AWARE.
Processes running 32-bit code use the thin WOW64
(Windows on Windows) translation layer on 64-bit
systems to communicate to operating system
services. 32-bit User mode applications that are
linked with the IMAGE_FILE_LARGE_ADDRESS_AWARE
switch enabled so they could take advantage of the
/3GB switch in 32-bit machines can allocate a
private address space as large as 4 GB when
running on 64-bit Windows. Note that the /3GB
boot switch is not supported in 64-bit Windows.
The larger potential 32-bit User process address
space is possible because operating system func-
tion no longer need to occupy the upper half of the
total 4 GB process address space. This allows User
mode applications to allocate almost the full 4 GB
32-bit addressing range.

Running virtual memory-constrained 32-bit
applications on 64-bit machines to supply additional
virtual memory headroom is particularly attractive
when the 64-bit machines can run native 32-bit
instructions without exacting a severe performance
penalty. That was not the case with the 64-bit
Itanium IA-64 machines that were introduced several
years ago that are supported by the Microsoft Server
2003 operating system. The IA-64, a radically new
processor architecture featuring a new instruction
set, executes the IA-32 instruction set using emula-
tion, which results in a severe performance penalty.
IA-64 machines are designed to run native 64-bit
applications without compromising their perfor-
mance, with backwards compatibility provided to run
32-bit applications as a secondary consideration. To
date, however, there are a very limited number of
native 64-bit server applications that could run on
these machines. The short list of native 64-bit server
applications currently includes IIS 6.0, Microsoft
SQL Server, Oracle, and SAP, among others.
(Microsoft maintains a far from complete list at
http://www.microsoft.com/windowsserver2003/
64bit/x64/app64catalog.aspx.)

The need to run 32-bit server-based applications
during a long period of transition to 64-bit Windows

makes the AMD-64 and Intel x64 architecture an
attractive interim choice. (The Intel x64 is a clone of
the original AMD-64 design.) Both AMD-64 and x64
machines are capable of executing native 32-bit
instructions with little or no performance penalty.
Processor-constrained 32-bit applications will suffer
a slight performance hit, but virtual memory-con-
strained server applications like MS Exchange
receive significant relief.
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