
The performance of Web services applications in
Windows 2000: monitoring ASP and COM+

Mark B. Friedman
Demand Technology

1020 Eighth Avenue South, Suite 6
Naples, FL USA 34102
markf@demandtech.com

Abstract.
Microsoft's proprietary ASP, COM+, and.Net software development technologies provide a powerful set of application
runtime services that target the development of enterprise-class applications. When it comes to deploying ASP, COM+,
and .Net applications, the Microsoft strategy is noticeably less coherent. Performance monitoring and capacity planning
for the Microsoft application development platform is challenging due to significant gaps in the measurement data
available and familiar problems correlating data from distributed transaction processing components running across
multiple machines. This paper focuses on the current ASP and COM+ runtime environment and the problems that arise
in monitoring the performance of web-based transaction processing applications that rely on these services.

Introduction.
Viewed as a whole, Microsoft's proprietary develop-

ment technology is noteworthy for both its breadth and
depth. Supplying both development tools and runtime
services, Microsoft provides developers with an integrated
software development platform for writing applications
that run on top of its basic operating system services. ASP,
COM+, and the .Net initiatives from Microsoft - combined
with a powerful set of COM+ application runtime services
- target the development of enterprise-class applications.
According to one observer, the goal of the COM+ runtime
services is "to simplify the development of highly concur-
rent systems."[1] By focusing on the productivity of
software developers, Microsoft tries to make it easy to
develop applications that run on its server platform.

When it comes to deploying ASP, COM+, and .Net
applications and monitoring the performance of the
mission-critical production systems built to exploit these
services, the Microsoft strategy is noticeably less coherent.
Performance monitoring and capacity planning for the
Microsoft application development platform is challenging
due to significant gaps in the measurement data and
familiar problems correlating data from distributed
transaction processing components running across
multiple machines. While Microsoft and various third
party vendors are working to fill these gaps, it appears
likely that this environment will continue to prove chal-
lenging for the foreseeable future.

This paper focuses primarily on the current ASP and
COM+ runtime environment and the problems that arise in
monitoring the performance of transaction processing
applications that rely on these services. It will discuss the
performance monitoring limitations that are common to
both environments that make it difficult to configure and
tune large scale transaction processing application systems

today. The current situation being far from hopeless, the
paper will then describe the interfaces that are available
that can be used to gather additional application runtime
performance statistics. Finally, it will review promising
new developments that should bring some relief to systems
professionals with responsibility for maintaining adequate
computer and network capacity for applications on the
Microsoft platform.

Background.
Over the past several years, Microsoft Corporation has

diligently pursued a strategy to develop an application
development platform on top of its Windows NT operating
system architecture. This application development platform

• relies on object-oriented programming paradigms,

• exploits a variety of industry-standard, open proto-
cols like HTTP, XML and SOAP, and

• is wrapped into a proprietary framework called
COM for building reusable code components.

COM, which stands for the Common Object Model, is an
object-oriented programming (OOP) environment. COM is
also the centerpiece of a broader application development
framework designed to support large scale, enterprise
applications. As COM has morphed into COM+ and now
.Net, Microsoft has made available extensive COM
component runtime services, including an SQL database
management system (MS SQL Server) and a transaction
monitor called Microsoft Transaction Server (mts) which
can be readily accessed by COM programs.

Originating on Intel servers with inherently limited
scalability, the Microsoft strategy embraces distributed
processing. To enhance the scalability of its platform using
a distributed processing model, Microsoft provides an

inter-process or inter-computer message queuing service
called MSMQ and three forms of clustering technology:

• Network Load Balancing (NLB), which operates a
cluster of up to 32 front-end machines that share a
single, virtual IP address,

• Component Load Balancing (CLB), which operates
exclusively on COM+ middleware programs, and

• Microsoft Cluster Server (MCS), aka Wolfpack,
which provides a high availability (HA), fault
tolerant cluster involving two, similarly configured
machines.

In addition, there is a broad range of Independent Software
Vendors (ISVs) that provide a variety of pre-packaged
COM components that support the Microsoft development
platform. Together, these products assist a thriving
community of application developers that work with
Microsoft's proprietary application development technology.

Microsoft also builds a complete set of application
development tools, including compilers, editors, debuggers,
and a code performance profiler. In a break with a long
tradition of industry practice to promote interoperability at the
computer programming language level, Microsoft has chosen
to build application development tools that specifically
support its proprietary application development platform.
Microsoft's latest extensions to the standard C++ program-
ming language are designed to support COM+ program
development. These proprietary language extensions are
known as C# (pronounced "C Sharp").

Windows NT application servers. The client side of a
COM+ transaction processing application normally uses
the User Interface services associated with the Internet;
namely HTTP running on top of TCP/IP. Of course, the
original focus of the Microsoft Windows operating system
was its Graphical User Interface (GUI), modeled on
research using high resolution graphics, and mouse-
manipulated menus that was performed at Xerox PARC
circa 1980 that was later commercialized in the Xerox Star
computer systems and derivative products at Apple
Computer, including the Lisa and Macintosh computers.
This is a much different lineage than the document-
oriented markup languages such as SGML and the
hypertext paradigm credited to Ted Nelson that the
designers of HTML adopted. As many organizations are
heavily invested with the Microsoft development platform
at various stages in its evolution, it may be helpful to trace
some of the major milestones in this line of development
as Microsoft has shifted its aim over time to focus on web-
enabled applications.

Early versions of Microsoft Windows grafted graphical
elements onto Microsoft's DOS operating system (MS-
DOS) that supported Intel-compatible 16-bit, and later
32-bit, computers. When a joint operating system develop-

ment project between Microsoft and IBM that produced
OS2 version 1 and 2 floundered, Microsoft initiated an
ambitious effort to produce an advanced operating system
on its own, which became Windows NT version 3,
introduced to the public in 1992. As discussed in [2], the
goals of the Windows NT development project were to
build a reliable and secure computing platform on top of
next generation computer hardware. The clear intent was
ultimately to replace MS-DOS and early versions of
Windows, which were welded on top of a DOS single-user
kernel, as a foundation for future application development.

With Microsoft focused on its huge install base of
desktop applications that exploited the Windows GUI
interface, Windows NT had to be able to run Windows
desktop apps. From an initial version of the OS that was
essentially agnostic with regard to what GUI ran on top of
it, Windows NT version 4 was redesigned and re-posi-
tioned as "a better Windows than Windows," as Microsoft
standardized its GUI application programming interface
(API) into a common specification called Win32 that was
supported on all 32-bit forms of Windows, including
Windows 9x and ME and Windows NT. From the begin-
ning, Windows NT also supplied a significantly more
elaborate set of application runtime services suited more to
multi-user server-based applications than the traditional
desktop applications associated with Microsoft Windows.
The NT operating system's support for a program thread
Scheduler with priority queuing and pre-emptive
multitasking in version 3, followed by symmetric multi-
processing (SMP) support in version 4, made it far more
suitable for enterprise class server applications than MS-
DOS based versions of Windows. Following the initial
delivery of its Back Office suite of server applications for
Windows NT version 3.5, including MS SQL Server and
MS Exchange, Microsoft succeeded in delivering an initial
set of integrated runtime services capable of supporting
large-scale, mission-critical, enterprise applications.
Microsoft championed these internally-developed, multi-
user server applications publicly to showcase the full
range of its application runtime services [3].

Web services. In a well-publicized sudden change in
direction [4], Microsoft maneuvered in the late 1990s to
absorb Web-based technology and the services associated
with the burgeoning Internet into its primary application
development platform. Microsoft moved quickly on a
number of fronts to incorporate Internet technology. These
included providing support for the Internet communication
protocols associated with TCP/IP as an alternative to the
LAN-oriented communications protocols like IPX,
developed by Novell, and NetBios that prevailed in the
early days of MS-DOS and Windows. This transformation
was so complete that by the time Windows 2000 was
released that TCP/IP became the default networking
protocol used by Microsoft-based clients [5].

In its effort to support TCP/IP networking protocols,
Microsoft was able to move as rapidly as it did because it
was able to adapt proven, open source software to the
proprietary Windows NT environment. The availability of
high quality, open source software to service the Internet
application protocols, including FTP, SMTP, and HTTP
code, assisted the effort to add Internet Mail support to
Exchange, for example, and deliver a fully functional Web
server called IIS (Internet Information Server). Ultimately,
Microsoft bundled IIS into Server versions of every copy
of its Windows NT (and 2000 and XP) operating system.

Meanwhile, Microsoft made a determined effort to
stake out a leadership position with its Internet Explorer
(IE) web browser. Exploiting Internet connectivity,
browser software developed rapidly into a universal
telecommunications client application, both widely
available and capable of accessing the unprecedented
range of "content" available on the public access World
Wide Web and private "intranets." Microsoft entered the
market for web browsers by licensing the source code for
Mosaic, one of the more popular browsers of its day,
which the company then integrated into Windows 9x and
Windows 2000. Microsoft's decision to "bundle" IE into
its operating systems was later challenged by its competi-
tors, leading the US Department of Justice to prosecute
Microsoft for violating the country's antitrust laws. (The
court-imposed remedy for these actions is still being
debated as this paper is being written.)

The legality of Microsoft's actions in this arena aside,
the result of this aggressive program to incorporate Web
technology into its operating systems was that Windows
2000 when it first became Generally Available was a
model TCP/IP networking client, while Microsoft's
bundled Internet Explorer browser program and IIS web
server application were also both widely deployed.
The extent to which the technology associated with
the Internet is pervasive across every major comput-
ing platform today makes Microsoft's aggressive
decision to bundle basic web services into its
operating system software look infallibly prescient
today. It was hardly a sure thing when Microsoft
began the effort.

While Microsoft's actions to make IE the dominant
browser program Windows-based clients use to access
the Internet today have been widely analyzed and
discussed, Microsoft's efforts to extend its development
tools to support Internet technology are often ignored.
Microsoft's initial stance suggested using web-based user
interfaces only as a "thin client" alternative to the more
functional Win32 GUI applications typified by
Microsoft's own Office productivity apps. While single
user desktop applications that rely on the Win32 GUI
services, like MS Word and Excel, continue to play a key
role in Microsoft's application portfolio, Microsoft's

adoption of web technology is so complete in its current
.Net platform that web browser-based application develop-
ment is considered the norm, rather than the exception.
Recognizing that the Internet protocols are capable of
interconnecting client-server applications with a virtually
unlimited range of client devices, including full-featured
desktop computers, laptops, handheld devices like phones
and PDAs, and even intelligent home and industrial
appliances, Microsoft's focus in .Net is on building tools to
develop and deliver web services applications almost
exclusively. To appreciate the full scope of Microsoft's
achievements in this area, it will help to consider the
evolution of the Web server environment from delivery of
primarily static information contained in read-only files to
web services that perform dynamic information exchange.

Dynamic web content. The shift from the display of
web content contained in static files to dynamic web
content generated programmatically is still underway.
Initially, web content was limited to delivering static pages
in standard HTML (HyperText Markup Language) format.
Functionally, the web browser sends an HTTP (hypertext
transfer protocol) Get Request referencing a specific html
file (or the site-defined default one) identified by a URL
(Uniform Resource Locator) to a web server application
(e.g., Apache, Netscape, Websphere, or IIS), which returns
the appropriate file data using standard TCP/IP session-
oriented connections. HTML codes inserted into the file
contain formatting instructions for the browser so that the
data returned can be displayed properly. The hypertext
aspects of HTML permit one file to reference other files
designed to be embedded in the display (gif or jpeg format
graphics, for example), which are known as inline files. In
this situation, several Get Requests from the client to the
server are required before the full display can be con-

FIGURE 1. WEB SERVER PROCESSING OF STATIC HTML REQUESTS.

structed. See Figure 1. Embedded hypertext links also
support transfer of control to related web pages upon user
command.

From the standpoint of the web server, individual Get
Requests are processed independently – it is both a
connectionless and sessionless protocol. However, HTTP
does sit in the protocol stack on top of a TCP-oriented
session that is responsible for maintaining a unique
connection between client and server. A unique TCP port
number is assigned to each sessionless (i.e., stateless, no
client state information is retained between successive
interactions) connection, which apart from periodic TCP
Keep Alive messages, can remain idle for minutes, hours,
and even days with no other consequences.

While these basic building blocks of HTML-based web
content are adequate for constructing useful and attractive
web sites, static HTML technology is not powerful enough
to build interactive web content that can be shaped by user
input. The first step taken by the Internet community to
augment static HTML with programmable capabilities to
alter content dynamically was the ability of the web server
to launch a program or script in response to user input
using the Common Gateway Interface (CGI). With CGI
scripts capable of processing forms, a rudimentary
transaction processing capability became a reality using
web browser clients to initiate programs executed on the
web server, which then fashions an appropriate reply.

The HTML specification also provides a simple
mechanism which CGI scripts can use to store and retrieve
state information about a client session on the client side
of the connection. A server, when returning an HTTP
object to a client (the browser), may also send a piece of
state information that the client will retain locally, usually
by hardening it on disk. Included in that state object is a
description of the range of URLs for which that state is
valid. Any future HTTP requests made by the client which
fall in that range will include a transmittal of the current
value of the state object from the client back to the server.
For no especially compelling reason, this state object is
called a cookie. The ability to maintain persistent state
information about the status of a client session extends the
capabilities of Web-based client/server applications into
the realm of transaction processing systems.

Rudimentary forms processing using a combination of
CGI scripts and HTML cookies inevitably generated
demand for even more Web programming
capability to harness the potential power of
this pervasive computing platform. Microsoft,
in particular, has been active in developing
several non-standard and proprietary exten-
sions to the basic functions available in the
original HTTP specification. These propri-
etary extensions are designed to improve web
site programming using Microsoft’s own

development tools. Below, we will review the functional
characteristics of the most important of these initiatives,
including ISAPI, ASP, and COM+.

Microsoft’s web application
programming extensions.

ISAPI. In addition to also supporting standard CGI
scripts, Microsoft’s IIS web server supports a proprietary
ISAPI (Internet Server Application Programming Inter-
face) interface that allows processing of HTTP Get and
Post Requests using Win32 programs packaged as DLLs
(dynamic linked libraries). Because ISAPI extension DLLs
are executables built by a compiler, they must be written
in a programming language like C++. Unlike CGI requests
which require a separate process to execute, ISAPI DLLs
can be multithreaded. Depending on the level of applica-
tion protection chosen for running ISAPI DLLs in IIS
version 5.0, an ISAPI extension can be executed

• using a thread within the IIS inetinfo.exe address
space thread pool,

• on a thread from a thread pool inside a container
process known as dllhost.exe, or,

• on a thread in a separate process (which also
happens to be an instance of dllhost.exe) dedicated
to that execution instance (similar to CGI scripts).

The lowest level protection provides the highest level
performance because the ISAPI extension DLL is dis-
patched on an existing thread from inetinfo’s internal
worker thread pool. However, this exposes the entire web
site to problems if the ISAPI extension DLL misbehaves.
Using a medium level of protection, IIS transfers control
to a thread from a pool inside the dllhost.exe container
process. At the highest level of protection available, each
ISAPI DLL is executed in a separate, dedicated instance of
dllhost.exe. This thread dispatching scheme is summarized in
Table 1. Inetinfo invokes a COM Object called the Web
Application Manager, or WAM (wam.dll), to provide a
consistent linkage mechanism between IIS and the ISAPI
extension DLL, where ever it happens to be loaded.

Besides the obvious relationship between the applica-
tion protection level and web site reliability, the choice of
where to run ISAPI extension applications also has distinct
performance implications. At the highest protection level,

leveLnoitcetorPnoitacilppA txetnocnoitucexedaerhT

woL exe.ofniteni loopdaerhtderahs

)delooP(muideM exe.tsohlld loopdaerhtderahs

hgiH detacided exe.tsohlld loopdaerht

TABLE 1. ISAPI APPLICATION PROTECTION LEVELS IN IIS 5.0.

ISAPI applications are run in dedicated processes reminis-
cent of the way CGI scripts are executed. IIS does provide
a configuration parameter to allow the dllhost processes
created to persist for some amount of time following
execution of the ISAPI DLL so that not every new
transaction provokes process creation and destruction.
Using the medium protection level, a rogue ISAPI DLL
cannot bring down IIS completely, but it certainly can
damage any other applications that are sharing the
dllhost.exe container process. Assuming process creation
and destruction is not too big a factor, the CPU overhead
considerations for a single shared dllhost container
process are roughly comparable to running dedicated
dllhost.exe processes, assuming there are sufficient
process-level worker threads available to handle the
workload in the case of a single instance of dllhost. In
either case, WAM must perform an out-of-process call
from inetinfo to dllhost and back to process the request.
These out-of-process calls are made using very expensive
COM+ runtime plumbing from a WAM instance inside
inetinfo to another WAM object inside dllhost.exe, as
illustrated in Figure 2.1

Resource accounting is problematic when ISAPI
extension applications execute in their default medium (or
pooled) protection mode or use the lowest protection level.
When ISAPI DLLs are all executing inside the same
container process, it is very difficult to figure out which
application is responsible for consuming which computer
resources. While process level resource usage statistics are
available for both CPU and Memory consumption, it is not
possible to apportion that usage data among multiple
applications running inside the same process accurately.
Thread CPU usage data is also available, but it is not any
more useful. At any point in time, any worker thread in the

FIGURE 2. THE ARCHITECTURE OF ISAPI EXTENSION DLLS WHEN

MEDIUM (OR HIGH) APPLICATION PROTECTION IS SET.

1 The mtx.exe container process is used instead in IIS version 4.0.

2 The use of I/O Completion Ports by the IIS-managed thread
pool almost ensures that a dispatched thread cannot be expected
to service any one application continuously. I/O Completion
Ports are a mechanism to re-dispatch a worker thread that would
otherwise block because it is performing I/O. A thread pooling
application that utilizes an I/O Completion Port tends to make
efficient use of its worker threads by maintaining a minimum
number of active threads.

thread pool can be processing any application request, so it
is difficult to know what to do with this data, too. Because
thread pooling is used inside dllhost.exe (and, for that
matter, inside inetinfo.exe, too, when the lowest protec-
tion level is specified), Thread performance Counters
cannot be relied upon to identify any single application
DLL for very long.2 For an appreciation of the difficulties
involved, see [6] for a procedure to determine which
ISAPI application program is responsible for a runaway
thread inside either inetinfo or dllhost.exe. This debug-
ging procedure, which requires freezing the dllhost.exe
process using WinDebug is clearly not suitable for
trouble-shooting most high volume, production web sites.

While running ISAPI extension DLLs in isolation
solves one aspect of the resource accounting problem, it
leaves another significant difficulty unresolved. With
multiple copies of dllhost.exe often active, it is still almost
impossible to correlate process level resource consumption
statistics with individual applications, except via the
debugging procedure referenced above. The process and
thread level performance statistics that Windows NT/2000
provides do not identify which active application DLL is
running inside each specific instance of the dllhost
container process. One approach is to process the transac-
tion-oriented data that is written to the web log and try to
correlate that with the process-level statistics that the
performance monitoring interface does provide. We will
review the contents of the IIS extended format web logs in
a moment. Another approach extends the standard perfor-
mance monitoring instrumentation so that the active
application DLLs running inside container processes can
be identified [7].

Several tuning parameters are available to adjust the size
of the IIS thread pool where ISAPI extentsion DLLs are
executed. These include MaxPoolThreads, which deter-
mines the number of threads per processor in the inetinfo
thread pool, and PoolThreadLimit, which sets an upper
bound on the number of threads in the inetinfo process
address space. Both these values are added to the Registry at
the HKLM\System\CurrentControlSet\Services\InetInfo\Parameters
key. The level of application protection influences the way
MaxPoolThreads works. At the highest level of protec-
tion, each dllhost.exe container process allocates at most
MaxPoolThreads per processor. At lower levels of
protection, MaxPoolThreads applies to the single thread
pool that all ISAPI extension applications share.

ASP. In an effort to make web application program-
ming easier than the low level ISAPI interface, Microsoft
subsequently introduced Active Server Pages (ASP),
another proprietary web application programming technol-
ogy that only Microsoft platforms support.3 Active Server
Pages contain a mixture of HTML codes and script code
that is executed by an IIS facility during runtime. IIS
supports scripts written in either VBscript or Javascript, or
in PERL, Python, TCL, and REXX, assuming you have
the appropriate language script interpreter program
installed. The HTML code contained in an ASP page
normally serves as a template that the script shapes
dynamically, based on the current context, to render the
final HTML response message that a web browser
program client can understand and display. The following
simple example illustrates the basic capability of ASP
scripting to generate HTML on the fly:

<% IF HOUR(NOW) < 12 THEN %>
 GOOD MORNING!
<% ELSEIF HOUR(NOW) < 18 THEN %>
 GOOD AFTERNOON!
<% ELSE %>
 GOOD EVENING!
<% END IF %>

Here the script generates an appropriate Hello message
based on the current time of day. Note: because the output
of ASP scripts is generated dynamically, IIS sets HTTP
cache-control to prevent browsers from caching HTML
output generated by Active Server Pages scripts because
there is no way to guarantee that an ASP page will look
the same the next time it is requested. Since the HTML
output created by ASP scripts cannot be cached locally by
either the client browser or by intermediate cache engines
and proxy servers, the performance of ASP applications
depends almost exclusively on server capacity, along with
the usual network performance factors that predominate
when Internet protocols are used [8].

Microsoft implemented the Active Server Pages feature
as an ISAPI extension DLL. Consequently, IIS processing
for Get and Post Requests for ASP files (which are identified
by an asp filename suffix) is quite similar to other ISAPI
extensions. The ISAPI interface passes all ASP requests to
asp.dll, which is also responsible for loading the appropriate
script engine. Depending on the application protection level
chosen, asp.dll is loaded in-process inside inetinfo or out-of-
process inside dllhost.exe. See Figure 2 for a picture of this
web application architecture, which illustrates the medium
or pooled level of protection to execute ASP scripts using
threads from a pool inside the dllhost.exe container
process. Figure 2 also illustrates the use of wam.dll
running inside both inetinfo.exe and dllhost.exe to link to
ASP application scripts regardless of which process is

hosting them. The presence of wam.dll, which is a COM
component (discussed below), inside dllhost.exe can be
used to associate a specific instance of the dllhost process
with ASP application processing.

The first time an ASP script is executed, the script code
must be interpreted by the Script engine. Compiled script
code is saved and stored in a memory-resident cache
called the Script Engine Cache, which saves time if the
application is re-executed again soon. The size of the
Script Engine Cache is limited by the amount of RAM
installed and a tuning parameter that sets an upper limit on
the number of compiled scripts that can be retained at any
one time. See Figure 3. A performance Counter in the ASP
Object called Script Engines Cached reports the current
number of files in the Script Engine Cache. There is also a
smaller Template Cache which is used to cache handles
(pointers) to the compiled scripts themselves. Hit ratio
statistics for the Template Cache are provided, but the
Template Cache, which manages handles, is not a large
consumer of RAM. Somewhat inexplicably, the more
important (and considerably larger) Script Engine Cache is
not instrumented. The best way to ensure that the Script
Engine cache is effective is to inventory the number of
ASP scripts that are being executed (this can be tabulated
from the web log) and verify that the Script Engines
Cached counter equals this number.

Since Active Server Pages were designed to make it
easy to build transaction-processing applications, they are
session-oriented. Each client that initiates an ASP page is

3 A product called Chili!Soft ASP can host ASP pages and
components on a variety of non-Microsoft Web servers without
any changes to application script code.

FIGURE 3. IIS 5.0 SETTINGS THAT CONTROL ASP COMPILED SCRIPT

CACHING.

a assigned a Session ID, which is stored by the client as
an HTML cookie. The programmer can write an ASP
event handler in global.asa to process the Session
OnStart event that is triggered the first time a user
runs any page in the site. The OnStart event is often
used to establish a value for TimeOut property of the
user Session and to store any additional identification
data needed in the Session ID cookie. Utilizing the
Session object to store session state creates special
considerations that impact network load balancing
schemes such as round-robin DNS that allow a series
of IIS web servers to appear as a single virtual IP
address. The proper technique for preserving Session state
that works with network load balancing is known as ASP
session-aware load balancing. This involves invoking the
load balancing scheme to distribute the initial application
request only and redirecting all subsequent requests to the
computer assigned to that client session. The Network
Load Balancing feature of Windows 2000 Advanced
Server, which allows you to create an IIS server cluster
containing up to 32 machines, provides an option to
specify that all connections from the same client IP
address be handled by a particular server to preserve
Session state.

Because the internal architecture of ASP script process-
ing is identical to ISAPI extension DLLs, capacity
planners face the same difficulties trying to associate
applications that use Active Server Pages technology with
the computer resources they consume. With multiple
copies of dllhost.exe often active, correlating process
level resource consumption statistics with individual
applications remains problematic. A combination of
running ASP applications in isolated processes and
analyzing the transaction-oriented data that is written to
the web log is the only viable option currently available.

COM and MTS. Active Server Pages technology,
where scripts and HTML coding can be embedded in the
same file, is quite handy for crafting dynamic web pages.
But developing scripts has its limitations when it comes to
programming complex applications. Of particular concern
is the fact that scripting languages do not support the type
of modularization that developing complex applications
usually requires. In the Microsoft framework, ASP
provides the presentation layer for what Microsoft
describes as a three-tiered approach to web application
development. The second layer is for business logic,
which Microsoft suggests should be performed using
COM modules and MTS runtime services. (In Windows
2000 COM and MTS are effectively merged into a single
runtime service called COM+.) A third and final layer is
for the back-end database processing where all persistent
state information about active transactions is usually
stored. We will not attempt to discuss back-end database
performance topics here; the interested Reader should
refer to [9]. See Figure 4 for an illustration that shows how

applications using this framework can be clustered for
both high availability and performance. In this illustration,
middle tier business logic is distributed across a series of
server machines that are executing COM+ components.
Component Load Balancing, a COM+ application cluster-
ing feature included in Application Center 2000, handles
routing to the middle tier. Before we consider some of the
performance implications of COM+, we need to under-
stand what it is and what it does.

Originally, COM was the runtime infrastructure
associated with ActiveX components, a development
technology introduced at the same time that Active Server
Pages scripting was released.4 It was designed initially as
an object-oriented facility to supercede OLE (Object
Linking and Embedding) as a way for one application in
one process to call another application in a different
process. (Think MS Word calling Excel to edit an Excel-
generated chart embedded in a Word document.) As an
interprocess communication (IPC) mechanism, the most
salient feature of COM, compared to more conventional
methods like RPC and the shared DLLs that were already
in widespread use on the Microsoft platform, was its
support for versioning. COM programs, which are also
packaged as DLLs, support a required interface called
IUnknown that allows the caller to discover the Methods
and Properties of the program being called at runtime. The
calling program can also use the IUnknown interface to
verify the version of the module being called before
transferring control to it.

A complete discussion of COM+ programming is well
beyond the scope of the present paper. Readers interested
in pursuing this topic can refer to [10] and any number of
other good books on this subject. The discussion here will
be limited to the use of COM+ as the middle tier of a

FIGURE 4. THE MICROSOFT FRAMEWORK FOR DEVELOPING

SCALABLE, 3-TIERED WEB SERVICES APPLICATIONS.

4 With this momentary penchant for calling all its new features
“Active” this or that (e.g., Active Directory), it seems likely that
someone in the Microsoft Marketing department responsible for
product naming was once brutalized by a high school English
teacher for using passive voice.

transaction processing runtime environment, supporting
concurrent execution of component programs. Enhancing
the scalability of the Microsoft web services platform,
modularized COM+ components can be executed in an
extraordinary variety of configurations, either within the
same computer or on a remote computer using the DCOM
(Distributed COM) protocol. For example, when requested
by a calling program, a COM+ program can execute in
several different runtime environments, including

• in process in the same thread as the calling program,

• in process in a new thread separate from the calling
program,

• in a new thread in a different process (out of pro-
cess) in the same computer, and

• in a thread in a process running on a remote computer.

To a remarkable degree, a COM+ program can be
written without regard to how the application is actually
deployed across this range of computing environments.
For example, whether a COM+ program executes in-
process as a library application or in a separate container
process (the ubiquitous dllhost.exe) as a server applica-
tion is a decision made when the compiled runtime
component is installed. When the COM+ component is
installed, the System Administrator sets its activation
property, which determines whether the program runs on
that machine as a library application or a server applica-
tion. For the most part, the program itself can be
developed independently of this deployment decision.

Naturally, how the COM+ runtime infrastructure
services a request that activates a component is important
from a performance perspective. If the module requested is
installed as a library application, COM+ merely transfers
control in-line so that the component executes on the
caller’s thread. Obviously, this is the most efficient
linkage. However, if the caller’s thread is not set up to
provide all the COM+ services the requested module
requires, COM+ will transfer control instead to a new
thread from the same process thread pool. If the module
requested is installed as a server application, COM+ will
transfer control from a thread in one process to a thread in
another process, with the COM+ runtime being respon-
sible for constructing a new dllhost.exe container process,
if necessary. If the requested component is only available
remotely – again, a configuration decision to isolate the
programs incorporating the business logic from the
presentation level, front end scripts – the dynamic module
linkage is automatically resolved using the DCOM
(Distributed COM) protocol, a close cousin of RPC.

Of course, there is a considerable difference in the
overhead associated with these three variations. A capacity
planning white paper published by Microsoft [10] references
measurements taken comparing performance in all three
environments: in-process calls, out-of-process calls in the
same box, and calls to a remote computer, as follows:

As Table 2 illustrates, distributed processing explicitly
trades off application response time, which elongates as a
result, against overall throughput, always a tricky decision
to make. Quite obviously, the overhead associated with a
DCOM call to a component executing on a remote
machine represents a serious performance penalty.
However, if a single machine cannot sustain the transac-
tion throughput required by the application, there may be
little alternative in the Microsoft environment other than
distributing the work across multiple machines. The
distributed processing architecture depicted in Figure 6
may be the only feasible way to handle the transaction
volume the application’s user population generates.

A COM+ component is further characterized by a
number runtime attributes, including its threading model,
serialization requirements, concurrency level, and transac-
tional support. These are all program attributes which are
set declaratively so that the program itself can be written
and executed (largely) independent of the implementation
considerations. From this perspective, COM+ is essentially a
runtime service that allows one program to call another
independent of the calling program needing to establish the
proper runtime environment for the called function to
execute. Instead, COM+ runtime services provide the linkage
from caller to callee, ensuring that the component requested
executes in a context that offers all the services it requires.

Similar to other transaction monitors like Tuxedo and
CICS, COM+ is also designed to simplify the development
of scalable transaction processing applications by masking
the inherent difficulties in building multithreaded applica-
tion programs that execute correctly in that complex
environment. COM+ applications can be written as if they
are running single-threaded, but are executed in a runtime
environment that supports multithreaded, concurrent
processing. To accomplish this, the COM+ runtime has
several noteworthy features, including multithreading,
object pooling, and built-in transactional support. Next, we
will consider each of these features briefly and their
impact on the performance of web services applications.

Threading. In theory, COM+ is an attempt to let
developers ignore serialization considerations in building
scalable, multithreaded applications. In practice, serializa-
tion is too implementation-dependent to jump from the
particular to the general in every case. But Microsoft’s
achievements in this most difficult area of application
development technology should still be applauded. COM+

dnocesrepsllaC deepsevitaleR

nur,noitacilpparevres+MOC
krowtenTesaB01arevo 526 1

-tuo,noitacilpparevres+MOC
enihcamemas,ssecorp-fo 3291 80.3

-ni,noitacilpparevres+MOC
enihcamemas,ssecorp 3333 33.5

TABLE 2. THE RELATIVE SPEED OF COM+ CALLS.

runtime services manage both an application’s threading
behavior and its serialization requirements, which are both
established by the programmer declaratively.

COM+ programming supports the full range of threading
options available to the Win32 application programmer. As
discussed earlier, the COM+ routine can be loaded directly
in the calling process and can execute in either the caller’s
thread or a separate thread. COM+ Objects can also be
executed out-of-process, which means that they are loaded
into a separate container process, similar to ISAPI exten-
sion DLLs. Each calling thread can acquire a separate
copy of the COM+ module running in a dedicated single
threaded apartment, or a single copy of the COM+
component can service multiple callers concurrently if it is
running in a multithreaded apartment. Instead of invoking
the serialization services of the Win32 API directly, the
COM+ programmer sets the synchronization property of
the application declaratively. For example, a database
update program is set to run in a single threaded apartment
with synchronization required, which ensures that only
one database update at a time is performed.

Thread pooling. At least one aspect of writing scalable,
multithreaded applications can be generalized, namely,
that a runtime environment that draws available resources
from a common thread pool is an effective way to build
client/server applications that scale from small machines
with single processors to large machines with multiple
processors. The general structure of a client/server-
oriented thread pooling application is one that fields work
requests and matches them to a pool of available process-
ing threads. On larger systems that can handle more
requests, one simply increases the size of the thread pool
to increase application throughput. In addition to IIS and
ASP, Microsoft has developed several other commercial,
thread pooling applications for Windows 2000, including
the network file sharing service known as Server, the SQL
Server database engine, and the MS Exchange messaging
and mail server.

Because thread pooling is so fundamental to multi-user
server application scalability, Microsoft decided to offer
developers a pre-packaged set of robust thread pooling
services to incorporate into their applications. If they
chose, developers can take advantage of COM+ runtime
features that provide generic thread pooling, instead of
painstakingly developing their own thread pooling logic.
This feature of COM+ is known as object pooling. Using
object pooling, the COM+ runtime environment is capable of
managing the concurrency level of re-usable (and reen-
trant) multi-threaded components automatically.

A component that is enabled for object pooling estab-
lishes minimum and maximum pool limits that determine
how many instances of the object can run concurrently. A
third pooling parameter determines how long a request for
a COM+ component that is already running at its maxi-
mum level will be queued before the request is timed out.

These runtime parameters can be set by the System
Administrator, assuming the application has its
ObjectPoolingEnabled property set. See Figure 5.

In this example, the System Administrator has used the
Component Services Explorer (CSE) applet to establish a
lower limit on the number of instances of this component
that the COM+ runtime environment will maintain in
memory once the application is started. (CSE provides the
administrative interface for all the COM+ program
parameters that can be set at runtime.) The object pooling
runtime parameters are logically equivalent to the tuning
knobs that Microsoft provides for its internally-developed
server applications. For example, earlier we discussed
tuning parameters that can be used to override system
defaults that control the behavior of IIS thread pooling.
The Windows 2000 file Server and MS SQL Server
DBMS also have similar thread pooling controls [12].

The reason for using object pooling is to improve
performance. A pooled component is maintained by the
COM+ runtime in a state that is ready to use, saving the
time it takes to create a new dllhost container process and
initialize the component inside it each time the component
is requested by a caller. When a pooled object is re-
quested, the COM+ runtime calls the object’s Activate
Method to transfer control from the Requestor program to
the pooled component. Instead of terminating convention-
ally, the component calls Deactivate when it is finished
processing the caller’s request. To determine if a deacti-

FIGURE 5. OBJECT POOLING PARAMETERS ARE SET FOR EACH

COM+ PROGRAM USING THE COMPONENT SERVICES EXPLORER

(CSE) SNAP-IN.

vated component can then be returned to the pool where it
can be re-used, the COM+ plumbing calls the component’s
CanBePooled Method. The component program returns
True if it is okay to re-use the object instance. If the
program returns a value of False, that instance of the
COM+ object is unloaded and deleted. COM+ runtime
services always maintain the minimum number of ready
object instances specified and will manufacture a new
instance of the object if a request occurs, all currently
activated objects are busy, and the component is not
running at its specified maximum.

Idle objects above the minimum concurrency level
persist for about 5 seconds, according to [1]; there is,
unfortunately, no runtime parameter to control the length
of time idle objects are retained. Nor is any instrumenta-
tion provided that monitors the concurrency level of active
pooled objects. However, assuming a pooled component is
installed as a server application and the specific instance
of the dllhost container process can be identified (as
described in [7]), the dllhost process Thread Count is a
valid indicator of concurrency.

Transactions. The final COM+ runtime service dis-
cussed here is transactional support. Within COM+, the
term transaction is used to refer to a logically distinct unit
of work with specific database recovery requirements.5 If a
COM+ program that is a transaction fails to complete
properly, or aborts, the transaction support in COM+
ensures that all database updates associated with the failed
transaction are backed out by any Resource Managers
(typically, connections to a DBMS) that have already
applied partial updates. COM+ implements the well-
known two-phase commit process to ensure that database
updates can be applied consistently even in a distributed
database environment where updates to multiple Resource
Managers need to be synchronized.

A COM+ component’s transaction attribute is set
declaratively, using the CSE, although there are alternate
methods that are programmatic. Once the transaction
attribute is set, then the COM+ runtime ensures that the
component, when it is activated, is dispatched in a
transactional context. Running inside a transaction, the
component program calls the SetComplete or SetAbort
Methods of the ObjectContext object to indicate either a
successful or unsuccessful outcome. If the component

issues a SetComplete to indicate successful completion
status, the COM+ runtime communicates with the appro-
priate Resource Manager(s) to commit the changes that
occurred within the transaction boundary. Alternatively, a
call to SetAbort would signal the Resource Managers to
roll back any database updates that were partially applied.
The COM+ runtime effectively insulates the application
programmer from having to understand many of the details
of the commit/rollback logic required by various DBMSes,
which can become quite complicated, especially in the
case of distributed database transactions.

IIS extends COM+ transactional support to ISAPI
extension DLLs, which by implication means that Active
Server Pages can be transactions. Similar to COM compo-
nents, an ASP application script becomes a transaction
declaratively. In VBscript, for example, this is accom-
plished with a declaration at the beginning of the page, as
follows:

<%@ LANGUAGE=VBSCRIPT TRANSACTION=REQUIRED %>
This declaration causes the COM+ runtime to create an

instance of ObjectContext that the page’s script can then
reference by calling the SetComplete or SetAbort
Methods. One ASP limitation is that the page (nee, script)
is the boundary of the transaction – a transaction cannot
span ASP pages. The transactional unit of work is always
the ASP page which contains the Transaction=Required
declaration. Building COM+ components from scratch,
there is a great deal more flexibility. If a component has a
Transaction=Supported attribute, for example, it can
participate in the transaction context of the calling program.
The COM+ runtime services, naturally, are responsible for
implementing the transition between one COM+ component
that is a not a transaction that calls another component that is.
A concrete example is an ASP script that is not a transaction
that calls a COM+ component program that is a transaction,
which is then responsible for posting a customer order to a
database. COM+ ensures that a transactional component
always executes in the appropriate context.

Summary. The foregoing discussion highlights the
COM+ runtime services that hide much of the complexity
associated with developing and deploying scalable COM
application component programs. The flexibility of the
Microsoft Distributed Networking Architecture raises
initial questions about which pieces of which applications
should be deployed where. In addition, specific COM+
deployment decisions, e.g., object pooling, raise obvious
capacity planning questions. Establishing minimum and
maximum pool sizes and monitoring pooling concurrency
levels are unmistakable concerns. Due to the degree that
Microsoft has succeeded in hiding the details of the
COM+ runtime plumbing from developers, it is difficult to
formulate reliable answers to these questions today.

Monitoring the performance of COM+ components can
be quite challenging, as we will discuss further below. In a

5 The definition of a transaction from [13] is a unit of work
defined as having the following properties: atomic, consistent,
isolated, and durable, also depicted as ACID attributes. For
example, the fact that transactions are atomic means that either
all the work associated with a transaction is performed or none
of it is. COM+’s use of the term transaction is consistent with
this standard usage. Unfortunately, computer performance
professionals often use the term transaction in a queuing model
theoretic context as a way of denoting units of work that arrive
from a client to a server for processing. This ambiguity can
cause considerable confusion.

production environment, it is not unusual to see many
instances of dllhost.exe running concurrently, each with
multiple threads. To monitor and tune a complex web
services environment, it is important to be able to deter-
mine which COM+ components are running where and
map these applications to their resource consumption
profile. We will take some preliminary steps in that
direction in the next section where we discuss the current
state of the performance data available for web services
applications in ASP, COM+ and .Net.

Web application services
performance monitoring.

Web application services using Active Server Pages
scripts and COM+ components have well-understood
performance monitoring requirements to support both
tuning and capacity planning. The principal requirement is
that measurement data be on hand that captures a client’s-
eye view of the human-computer interaction. In any client/
server web application, the user participates in an interac-
tive computer session broken into discrete request/
response sequences. We denote each discrete request/
response sequences as a transaction. (In this section it is
necessary that we adopt a different definition of a transac-
tion than COM+ uses.) Here, a transaction corresponds to
an end user’s perception of an individual request/response
sequence. In the case of a typical web services application,
consider one such sequence where the end user initiates a
transaction by positioning the computer’s mouse pointer to
a button on a form marked “Submit” and clicking on it.
From an end-to-end response time perspective, everything
that happens next that involves the network and the
computers involved in processing this client request
represents processing associated with this transaction.

In any client/server transaction processing environment,
we endeavor to measure the delay or latency involved in
processing the user request on both the client and server
machines, as well as assessing the network latency
involved in the communication of the request and the server’s
reply. For the purpose of the present discussion, however, we
will ignore the network latency associated with transporting a
web client’s request to a web server and back. This network
latency is primarily a function of distance, but can be
influenced by a variety of internetworking infrastructure
issues that are beyond the scope of the present discussion.
Here we intend to focus only on what happens to the
request from the time it arrives at an IIS web server for
processing until IIS returns an HTTP Response message.

Using the Microsoft web services application architec-
ture, we have seen that the server-side processing of the
client request is normally broken into a number of discrete
processing components. The anatomy of a typical (and
relatively simple) ASP/COM+ transaction is depicted in
Figure 6. Upon pressing the Submit button, the end user

initiates an HTTP Post Request referencing the order.asp
script. IIS processes this HTTP Request, transferring
control to the dllhost container process (via wam) where
the order.asp script is executed. The script then calls a
COM+ program in a separate dllhost container process
that is responsible for updating the back-end database with
information from the customer’s order request. When the
database updates complete, the COM+ transactional
component makes a SetComplete Method call to commit
the database update, and then returns to the script. The
script then fashions an appropriate HTTP Response
message, which is relayed back to IIS. Finally, IIS returns
the HTTP Response message that the script generated and
sends it back to the client.

We have simplified this picture of the transaction
processing performed on the server considerably, leaving
out the COM+ plumbing used to transfer control from the
caller’s thread to the called program and back again, the
data base connection processing, the fact that additional
HTML, gif, and jpeg files might be embedded in the
HTML response message, the processing of the HTTP
requests by lower levels of the TCP/IP protocol stack, and
other salient details. Instead of making one call to a
COM+ component, the order processing script might
invoke several component modules. Moreover, there
might well be multiple trips back and forth to the database.
We have also chosen to ignore for now the possibility that
the ASP script, the COM+ components, and the back-end
database might all reside on different machines, causing
the transaction to encounter additional networking delays.

Nevertheless, the simplified picture of a web services
transaction should suffice to illustrate the need to instru-
ment each discrete component involved in processing the
transaction. Furthermore, the discrete component-level
measurements themselves ultimately must be correlated to

reflect all the processing that was
performed. This correlation of
independent measurements applied

to discrete events and
components is a
major technical
challenge on any of
the major computer

FIGURE 6. THE ANATOMY OF A WEB SERVICES APPLICATION

TRANSACTION.

platforms [14]. The goal of this paper is to show just how
big a challenge this problem poses for performance
analysts responsible for web services applications built for
the Microsoft platform. In the sections that follow, we will
describe the measurement data that is currently available
for HTTP Requests, ASP scripts, and COM+ components.

Web event logging. If an IIS application server is
enabled to generate extended format web logs, it is
possible to collect data on server response time for
individual HTTP Requests. The time taken field in the
log, which is not among the data fields enabled by default,
reports internal processing time for each HTTP Request in
milliseconds. Figure 7 shows sample output from the log
for an HTTP Request. The date and time of the request,
the IP address of the client, and the specific resource being
requested are shown. At 5:11:28, a Get Request for
iccm.asp is processed. According to the log, it took
slightly more than 5 seconds to process this request. The
HTTP Response message that iccm.asp generated evi-
dently referenced several embedded graphic files, which
accounts for a number of subsequent Get Requests from
the same client. This spotlights one difficulty with this
response time measurement data – it is difficult to tell a
priori exactly which Get Requests correspond to a discrete
transaction as perceived by the end user. If only the main
in-line processing by the iccm.asp script code to create an
HTTP Response message is significant, it is possible to
consider just the time taken processing that Request. But,
if you want to measure the end user experience, it makes
sense to consider all the elements of the rendered web
browser display. This suggests summarizing the time
taken processing all the Get Requests associated with a
single web page display. In this simple example with only
one user request active, that seems like a relatively simple
thing to do. In the log on a production web server that is
servicing concurrent requests from multiple connections
simultaneously, the processing of events from different
user requests are intermixed. Under those more typical
circumstances, the boundaries between end user requests
are likely to blur.

A second consideration is problems interpreting the
time taken data alongside the timestamp information in
the log, which, according to Microsoft documentation,

represents the time when the log record was written. If you
sum up all time taken processing the Get Requests
shown in Figure 8, the result is a total of 11.359 ms. That
is difficult to reconcile with the timestamps of the log
records reported in column 2 which show all the Get
Requests being processed over a span of just 3 seconds.

A final concern is how the event data recorded in the
IIS log corresponds to the performance data available from
other sources, including the performance data the System
Monitor provides. The log data should be well correlated
with other web performance data since they are all derived by
the same underlying measurement procedure. The HTTP
method calls reported in the log, for example, should
correlate well with the counters reported in the Web service
Object, including Get Requests/sec, Post Requests/sec, etc.
However, as of this writing, there is no published work
that has analyzed the validity of this data rigorously.

Interval performance data. Using the System Moni-
tor, or some similar tool, it is possible to report on several
indicators of web server transaction load on an interval
basis. For most Web servers, IP Datagrams received/sec
and TCP Segments received/sec show quite similar
request rates, as illustrated in Figure 8, which is an
example showing TCP and IP activity for a busy commer-
cial web site. This is because HTTP request packets are
usually small enough to fit (< 1500 bytes) in a single
Ethernet segment. That is something that can be verified
against the cs bytes field in the web log, which reports
length of the HTTP request.

Figure 9 illustrates the relationship between HTTP
Method calls (GET, POST, etc.) and ISAPI calls, reported
by the Web services performance Object, compared to the
ASP Requests/sec Counter. In this instance, only about
1/10 of all IP packets received and processed by the web
server represent HTTP requests. This reflects the normal
amount of network traffic associated with establishing
TCP connections, TCP Acknowledgement packets that
must be processed, keep-alive messages and other over-
head functions, some of which can be minimized by
tuning, see [5]. However, all five indicators of the transac-
tion load are autocorrelated. This is a useful finding in
case not all the metrics happen to be available, for one
reason or another. Moreover, as Figure 10 shows, the

FIGURE 7. OUTPUT FROM THE EXTENDED FORMAT IIS WEB LOG.

date time c-ip cs-method Cs-uri-stem sc-status sc-bytes cs-bytes time-taken
5/16/2002 5:11:28 216.23.50.222 GET /iccmFORUM/public/img/ICCMLink.gif 200 4150 414 516
5/16/2002 5:11:28 216.23.50.222 GET /iccm.asp 200 42104 517 5015
5/16/2002 5:11:28 216.23.50.222 GET /iccmFORUM/public/img/RedArrow.gif 200 1076 414 218
5/16/2002 5:11:28 216.23.50.222 GET /iccmFORUM/public/img/Clear.gif 200 267 411 235
5/16/2002 5:11:29 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0101.gif200 17854 432 875
5/16/2002 5:11:29 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0102.gif200 17309 432 625
5/16/2002 5:11:29 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0103.gif200 9680 432 375
5/16/2002 5:11:29 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0104.gif200 17717 432 625
5/16/2002 5:11:30 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0106.gif200 16351 432 500
5/16/2002 5:11:30 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0105.gif200 16923 432 828
5/16/2002 5:11:30 216.23.50.222 GET /iccmforum/public/Capacity/CPUResource/Wicks0107.gif200 7820 432 313
5/16/2002 5:11:30 216.23.50.222 GET /iccmFORUM/public/img/innovation.gif 200 3531 416 344
5/16/2002 5:11:30 216.23.50.222 GET /iccmFORUM/public/img/Eval3x1.gif 200 2772 413 219
5/16/2002 5:11:30 216.23.50.222 GET /iccmFORUM/public/img/BlueArrow.gif 200 297 415 328
5/16/2002 5:11:30 216.23.50.222 GET /iccmFORUM/public/img/BlueArrowLeft.gif 200 1077 419 343

relationship between the transaction load and
processor resource consumption at this site, for
example, is quite obvious. Certainly, this is an
unsurprising result on a machine that is
dedicated to a web services application, as in
this case.

Correlating the response time measurements
reported in the web log against other transac-
tion statistics available in System Monitor is
problematic because, unfortunately, this
critical measure of service levels is generally
not available for Microsoft web services
applications. The one measure of transaction
response time that is available in the System
Monitor is the ASP Request Execution Time
and Request Queue Time counters. The value
reported, which is also in milliseconds, is the
time of the last ASP request that executed. In
an environment such as the web site we have
been discussing where ASP transactions arrive
at a rate of up to 5 per second, the ASP
Request Execution Time and Request Queue
Time counters are properly viewed as a
sampling mechanism.

As discussed in [12], there is sufficient ASP
measurement data to calculate the mean response
time of ASP Requests using Little’s Law, as
follows:

MEAN RESPONSE TIME =
(REQUESTS EXECUTING + REQUESTS QUEUED)/
REQUESTS/SEC

Figure 11 shows the estimated ASP Request
mean response time for this site, calculated
using the Little’s Law formula. Note that this
is a mean value, appropriate for many mean
value analysis (MVA) performance modeling
techniques, but limited for service level
reporting. We recommend that the average
response time calculated using this formula
always be validated against the average

FIGURE 8. MEASUREMENTS FOR IP DATAGRAMS RECEIVED/SEC AND TCP
SEGMENTS RECEIVED/SEC ARE USUALLY ISOMORPHIC DUE TO THE RELATIVELY

SMALL SIZE OF HTTP REQUEST PACKETS.

FIGURE 9. COMPARING THE RATE OF HTTP METHOD CALLS, ISAPI CALLS, AND

ASP REQUESTS/SEC.
Execution Time and Queue Time calculated from the
sampled performance Counters.

Transaction decomposition. As we have seen, both
the web log event data and the interval performance data
provide measures of overall ASP transaction response
time, at least from the standpoint of the IIS server. But
these measurements provide no insight into the impact of
delays associated with the processing by middle tier
COM+ components and/or calls to back-end database
connections, assuming the web services application is
architected to take advantage of these facilities. In the case
of calls to COM+ applications, an event-oriented trace
mechanism is available that can be used to determine the

rate of requests for component activation and the service
time of those requests. This facility is known as COM+
Events. At least one commercial software package
currently uses the COM+ Events trace facility to generate
transaction load and response statistics to support tuning
and capacity planning. In contrast, no transaction-level or
user level measurement data currently exists to monitor
calls to an MS SQL Server 2000 back-end database.
Moreover, there is no documented facility currently
available in that product that could be exploited to gather
the required SQL Server measurement data.

The good news is that at least the performance of
COM+ components can be monitored. However, doing so
requires a 3rd party package. When a COM+ component is

installed with support for events and statistics
enabled (reference the Concurrency tab in the
COM component Property page), transaction
load and service time information is forthcom-
ing. The COM+ statistics that are available are
provided using the COM+ Events tracing
facility. When Events are enabled, each call
and return to a COM+ interface method is
traced, which corresponds to the arrival rate
and completion rate of specific transactions,
respectively. Using a correlation ID, a COM+
Event tracing application can also determine
how long an interface method executed.

As trace facility exclusive to the COM+
runtime, COM+ Events are not integrated into
the Windows Measurement Instrumentation
(WMI) framework via either a WMI provider
or a perflib DLL. There are, however, several
specific system management tools that enable
COM+ Event tracing and report the results.
The most familiar is the Transaction Statistics
display in CSE, illustrated in Figure 12. The
Transaction Statistics display shows some
interesting current and aggregate statistics.
However, it is of very limited value for
performance monitoring since what you see
illustrated in Figure 12 is all you get. There is
no ability to break out statistics by component,
no ability to gather interval statistics, and no
ability to access individual transaction-level
data. It is worth noting that a COM+ compo-
nent does not have to support Transactions in
order to be counted in the Transaction Statis-
tics display – this is one area where COM+’s
use of the terminology is inconsistent.

The Visual Studio Analyzer, an application
performance profiling tool, also supports
COM+ Event tracing to allow developers to
determine how well their COM+ applications

FIGURE 10. CPU UTILIZATION AS A FUNCTION OF ASP REQUESTS/SEC.

FIGURE 11. ASP REQUEST RESPONSE TIME ESTIMATED USING LITTLE’S LAW.

are performing. This is a useful tool that developers can
use, but it is of little help in a production environment. The
Component Load Balancing (CLB) clustering facility in
Application Center 2000 is the other Microsoft application
that relies on COM+ Event tracing. CLB’s control compo-
nent pulls transaction level statistics from each remote
machine in the cluster every 800 milliseconds in order to
make optimal routing decisions.

A third party COM+ performance monitoring applica-
tion called AppMetrics, developed by Extremesoft, also
exploits the COM+ Events trace facility. AppMetrics is the
only robust performance monitoring application currently
available for COM+ componentware. As Figure 13
illustrates, the AppMetrics software breaks out the
transaction statistics by component, reporting both arrival
rates and service times. When the AppMetrics data is

collected for identifiable COM+ server applications, it is
also possible to gather associated data on processor and
memory utilization by collecting Process counters for
those specific instances of dllhost. Together, this measure-
ment data is robust enough to apply a variety of traditional
performance engineering and modeling techniques for
COM+ web services application programs.

While the AppMetrics COM+ transaction load and
response time data supplies a critical piece of the perfor-
mance monitoring puzzle, it does not encompass the full
picture of web services application performance for the
Microsoft architecture depicted back in Figure 4. As noted
earlier, timing and resource utilization information on
database calls per transaction is sorely lacking when MS
SQL Server is the back-end DBMS. Moreover, the

measurement data we described that does exist for HTML
Method calls, ASP scripts, and COM+ transactions cannot
easily be correlated.

Nevertheless, even when the resource accounting data
cannot be attributed to specific user transactions precisely,
in many circumstances reasonable steps can be taken to
apportion resource consumption per transaction approxi-
mately. Apportionment techniques are a well-established
practice in similar situations on other platforms whenever
resource accounting is not as complete as desired. Appor-
tionment would permit capacity planners to employ a
broad set of analytic techniques to resolve performance
issues with confidence at sites deploying Microsoft’s web
services application platform.

Summary.
Capacity planners responsible for web services applica-

tions on the Microsoft Windows 2000 platform face
difficult, but not unfamiliar problems with inadequate
performance data. As Microsoft has rapidly evolved its
software development platform for delivery of dynamic
web-based content, deployment-oriented tools for web
services application performance monitoring have lagged
behind. This paper describes the basic architecture of web
services applications on the Microsoft platform and
discusses the performance monitoring data that can
currently be gathered to manage the deployment of these
applications.

Conceptually, the Microsoft platform consists of three
application processing tiers that represent (1) the presenta-
tion layer, (2) the business logic, and (3) the back-end
database processing. The presentation layer currently
relies on Active Server Pages (ASP) scripts, a Microsoft-
proprietary technology that permits HTML codes to be

intermixed with VBscript or Javascript code
to generate HTML Response messages. The
business logic layer relies on COM+, a set of
object-oriented Component Services that
simplify the job of building multi-threaded
transaction processing applications. COM+
is also a Microsoft-proprietary technology.
The back-end database processing can be
handled by any of a variety of DBMS
engines, including Microsoft SQL Server
and Oracle. Optionally, these processing
components can be deployed in a wide
variety of runtime environments, including
multiple machines that are clustered for
scalable performance.

Microsoft built ASP on top of an existing
Internet Information Server (IIS) web server
facility called ISAPI that was designed to
allow web pages to be created
programmably. Standard web server

transaction logging facilities can be used to monitor the
arrival rate and service time of ASP scripts, similar to the
way other HTTP Method Calls are instrumented. In
addition, interval-oriented ASP transaction statistics are
also available from a standard Windows 2000 performance
monitor, such as the bundled System Monitor application.
The ASP transaction statistics include a measure of script
execution service time and queue time, but these are
properly understood as a sampling technique that measures
the response time of the last ASP script execution. Using
Little’s Law, it is also possible to calculate average
response times for ASP scripts.

Resource accounting for ASP application scripts is
confounded by the Application Protection parameter, new
in IIS version 5.0, which sets the execution environment of
ASP scripts. They can execute inside the IIS inetinfo.exe
process address space, inside a shared instance of the
dllhost.exe container process, or in isolated instances of
dllhost. It is not currently possible to determine which
scripts are executing in which instances of the dllhost
container process. This makes it impossible to associate
process level resource utilization statistics such as CPU
and Memory consumption with the execution of specific
application scripts.

Depending on whether they are defined as library
applications or server applications, COM+ component
programs can execute either inside the calling calling
application process or out-of-process inside the ubiquitous
dllhost.exe container process. While the tools Microsoft
provides are woefully inadequate to the task of monitoring
COM+ transaction processing programs, 3rd party tools are
beginning to rise to the challenge. One third party tool
utilizes the COM+ Events tracing facility to track COM+
transaction arrival rates and service times by application.
Another third party tool can determine which COM+

FIGURE 12. THE TRANSACTION STATISTICS DISPLAY IN COMPONENT SERVICES EXPLORER.

application modules are resident in which dllhost.exe
container process so that adequate resource accounting can be
performed. These are both steps in the right direction.

The capability to process web services applications
using multiple-machine clusters presents a more formi-
dable performance monitoring challenge. In clustered
environments, measurement data from multiple machines
needs to be integrated to capture all application processing
components. Moreover, transaction-level measurement
data from the three different processing tiers – the presen-
tation layer, the business logic, and the backend DBMS –
needs to be correlated. This transaction level data, where it
exists today, is piecemeal. Currently, no facilities of the
Microsoft web services application runtime environment
are available that could be exploited to provide an inte-
grated view of application performance. This defect may
prove to be a significant obstacle to adoption of the
Microsoft application development framework for enter-
prise-ready, mission critical applications.

FIGURE 13. APPMETRICS COM+ TRANSACTION PERFORMANCE MONITORING.

References
[1] Tim Ewald, Transactional COM+: Building scalable

applications. Boston, MA: Addison-Wesley, 2001.

[2] G. Pascal Zachary, Showstoppers: the breakneck race to
create Windows NT and the Next Generation at Microsoft.
New York, Simon and Schuster: 1994.

[3] “Writing great Windows NT server application,” Microsoft
Corporation, Jan 18, 1995.

[4] Ken Auletta, World War 3.0: Microsoft vs. the U.S. Govern-
ment, and the battle to rule the digital age. New York:
Broadway Books, 2000.

[5] Thomas Lee and Joseph Davies, Windows 2000 TCP/IP
Protocols and Services: Technical Reference. Redmond, WA:
Microsoft Press, 2001.

[6] Anand Rajagopaian, “Debugging distributed Web applica-
tions,” MSDN, Jan 2001.

[7] Performance SeNTry version 2.4 User’s Manual. Naples, FL:
Demand Technology Software, 2002.

[8] Daniel A. Menasce and Virgilio A. F. Almeida, Scaling for
E-Business: technologies, models, performance, and capacity
planning. Upper Saddle River, NJ: Prentice-Hall PTR, 2000.

[9] Kalen Delaney, Inside SQL Server 2000. Redmond, WA:
Microsoft Press, 2000.

[10] Don Box, Essential COM. Boston, MA: Addison-Wesley,
1998.

[11] “Load Balancing COM+ Components,” MSDN, March
2002.

[12] Mark Friedman and Odysseas Pentakalos, Windows 2000
Performance Guide, Sebastopol, CA: O’Reilly Associates,
2002.

 [13] Jim Gray and Andreas Reuter, Transaction Processing:
Transaction Processing: concepts and techniques. San
Francisco, CA: Morgan Kaufmann, 1993.

[14] Mark W. Johnson, “Application Response Measurement
(ARM) API, Version 2,” CMG Proceedings, 2000. Also
available at http://regions.cmg.org/regions/cmgarmw/
marcarm.html.

