
Windows NT page replacement policies

The Microsoft Windows NT operating system is a
demand paged, virtual memory operating system.  NT
currently supports 32-bit virtual memory addresses on
Intel-compatible and Digital Alpha processors. This paper
describes the virtual memory management features of
Windows NT and its implications for performance
monitoring and capacity planning. Because Windows NT
runs primarily on PC architectures which have limited I/O
bandwidth, ensuring there is ample physical memory is one
of the most important configuration and tuning options.

The first section of this paper provides an overview of
the NT Virtual Memory Manager. The second section
describes the page replacement policies implemented in
NT. The third section describes the memory management
performance measurement data that NT provides and also
discusses practical strategies for sizing and tuning Win-
dows NT systems.

Virtual addressing.
Virtual memory is a feature common to most advanced

processors that uses a hardware mechanism to map from
logical (i.e., virtual) memory address that application
programs use to real physical memory addresses [1]. The
logical memory address range of an application is divided
into fixed size chunks called pages that are mapped to
similarly-sized physical page frames that are resident in
real memory. This mapping is dynamic such that logical
addresses that are frequently referenced tend to reside in
physical memory, while infrequently referenced pages are
relegated to secondary disk storage. The resident set of
virtual memory pages is called the process’s working set
because those are its currently active pages.

Virtual addressing is designed to be transparent to
application programs, which can then be written without
regard to specific real memory limitations of this or that
computer. Since their introduction in the late 60’s, virtual
memory architectures quickly came to dominate the
computing environment due to their flexibility compared
to the fixed memory partitioning schemes that preceded

them. One pervasive concern that virtual memory schemes
encounter is that the performance of application programs
may suffer when there is a shortage of real memory in
which to execute. Because real memory is allocated to
executing programs on demand, there is also a sense that
programs compete for what physical memory is available.
The inevitable result of competiton when memory is a
scarce resource is that the memory access pattern of one
program can unduly influence others.

Virtual memory addressing is decidedly not transparent
to operating systems. The OS must perform a number of
critical functions to enable the scheme to work. Chief
among them is the responsibility for constructing and
maintaining address space virtual-to-real memory transla-
tion tables that the hardware refers to in the course of
executing instructions. The function of these page tables is
to map logical program virtual addresses to real memory
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Abstract.
The Microsoft Windows NT operating system supports virtual memory on a variety of hardware platforms, the most common
being the Intel IA-32 architecture. This paper provides an overview of Windows NT virtual memory management, with a

particular emphasis on the hardware-independent mechansim it uses for page replacement.
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locations, as illustrated in Figure 1. Another key role the
operating system plays is to manage the contents of real
memory effectively. This requires implementing a page
replacement policy to ensure that frequently referenced pages
remain in real memory and the handling of page faults
when a program accesses a virtual address which is not
currently mapped to real memory.

Windows NT builds page tables on behalf of each
process when it is created. The page tables potentially map
the entire 32-bit 4 GB virtual process address space
depicted in Figure 1. The Win32 ����������	
 API call
provides both for reserving contiguous virtual address
ranges and committing specific virtual addresses. Commit-
ting virtual memory addresses causes the NT Virtual
Memory Manager (VMM) to construct a page table entry
to map the address into physical RAM, or, alternatively, to
one or more paging overflow files that reside on disk. Since

page table entries themselves are built upon demand, all
other unreserved virtual memory addresses are termed free.

NT maintains a Commit Limit across all process
allocated virtual memory. This prevents page tables from
being built for virtual memory pages which will not fit in
either physical RAM or the paging files. The Commit Limit
is the sum of the amount of physical memory and the allotted
space on the paging files. NT currently supports a maximum
of 16 paging files, each of which must reside on distinct
logical disk partitions. Each paging file can be as a large as 4
GB. When the virtual memory workload of Committed
Bytes exceeds 90% of the Commit Limit, NT issues a
distinctive warning message to the Console, illustrated in
Figure 2. Following the instructions in the message directs
the Operator to the Performance Tab (see Figure 3) of the
System applet in the Control Panel where additional
paging file space can be defined.

The Virtual Memory paging file dialog box allows for
defining a range of allocated paging file space for each
paging file defined. After several seconds of processing
above the 90% Commit Limit without an operator
intervention occurring, Windows NT will automatically
extend any paging files that are defined with flexible extents,
subject to space being available on the specified logical disk.
Windows NT performance experts [2, 3, 4] are in agreement
that such a unilateral action jeopardizes the performance of
the system, subjecting subsequent paging file operations to
the potential of crossing noncontiguous segments of the
paging file. This in turn leads to time-consuming embed-
ded disk seek operations. The experts unanimously
recommend that paging file allocations be strictly limited
so that the initial allocation cannot be extended. This
prescription presumes that initially paging file allocations
themselves acquire a set of physically contiguous disk
sectors. This is often a safe assumption for the primary
paging file built by the Windows NT installation program
on the same logical disk partition as the operating system
itself when the logical disk is normally in a pristine state.
(The initial paging file is built with a minimum allocation
equal to the amount of physical memory plus about 15
MB. It is defined by default so that it can extend to
approximately 2X the size of RAM.) This may not be a
good assumption for paging files which are added subse-
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quently, which are likely to be subject to some degree of
fragmentation.

While in no way trying to minimize the performance
impact of paging operations forced to seek long distances
from one noncontiguous disk sector to another associated
with a fragmented paging file, I invite Readers to consider
the alternative. Not being able to extend the paging files
when the system passes the 90% Commit Limit exposes
running programs to the possibility of virtual memory
allocation failures, a contingency that few programs allow for.
Not allowing the paging files to expand under stress redirects
that stress onto applications, which will surely fail as the
absolute Commit Limit looms. So long as the virtual memory
allocation peak itself is transient, allowing the paging files to
expand at least ensures that the system stays up. For my
money, system availability is always worth preserving, even at
some sacrifice of optimal performance levels.

A more proactive approach using continuous perfor-
mance monitoring would alert the performance analyst
when ��
	������������� exceeds a 70% threshold value. If

you are operating a system above this level of memory
utilization, it is appropriate to explore longer term reme-
dial measures that might involve (1) adding more physical
memory, (2) defining additional paging file space, or both.
Computers systematically exceeding a 70-80% Committed
Bytes threshold may suffer from serious performance
degradation due to excessive demand paging activity anyway.

Process virtual address space. As indicated above, each
NT Process acquires a virtual address space of 4 GB,
divided conventionally into two equal parts as depicted in
Figure 4. The lower 2 GB of each process address space is
private. This range of addresses refers to pages that can
only be accessed by threads running in this process address
space context. The upper 2 GB of each process address
space maps common system addresses. (Note: Windows
NT Enterprise Edition permits a different partitioning of
user and system addressable storage locations which
extends the private User address range to 3 GB and shrinks
the system area to 1 GB.) While addresses in the system
range are commonly accessible from threads running in each
and every process, system addresses are allocated using
supervisor (Ring 0 on Intel hardware) authority, which
restricts memory access to kernel threads with similar
authority. In this fashion, application program threads
running in user mode are unable to access virtual memory
locations associated with different process address spaces
and are also prevented from directly accessing commonly
addressable virtual memory locations associated with the
operating system. Specific virtual memory management
API functions are used to allocate portions of common
addressable system areas to share data between two or
more distinct processes, as illustrated. The most popular
technique for doing this in NT is for one process to map a
file into commonly addressable system storage and point
one or more additional processes to the range of system
virtual addresses associated with the mapped file Object.

Virtual address translation. The hardware defines the
precise mapping function that is used to translate a
running program’s logical “virtual” addresses into real
physical memory addresses. Hardware specifications
include (1) the mechanism by which the specific virtual
translation context is established for specific address spaces,
(2) the format of the actual translation tables, and (3) the
method for notifying the operating system that page faults
have occurred. The Intel Architecture which dominates
the Windows NT computing platform supports 32-bit
virtual addresses. Intel’s IA-32 processor architecture
mandates the format of the page tables that the Windows
NT operating must maintain to enable the computer to
perform this virtual-to-real address translation. [5]

Figure 5 shows the specific IA-32 mechanism for
translating virtual to real addresses. Translation generally
occurs using a 4K page. (So-called large 1 MB pages are
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also supported, which NT uses for mapping the operating
system kernel.) A two level, hierarchical indexing scheme
is employed using a Page Directory, which then points to
the page tables themselves. The Page Directory resides in a
single 4K page which is always resident in memory while
the process executes. Internal Control Register 3 points to
the origin of the Page Directory. Page Tables, themselves
also 4K in size, are built on demand as virtual memory
locations are committed. These consist of 32-bit Page
Table Entries (PTEs) which contain the physical memory
address where the page of virtual addresses is currently
mapped. Each Page Table can map 1024 4K pages (a 4
MB range), while the Page Directory can point to 1024
Page Tables. The combination supports the full 4 GB
addressing scheme.

As the processor hardware encounters virtual addresses,
representing either instructions or data areas, it performs a
table look-up. The first 10 bits of the virtual address are
used as an index into the Page Table Directory to locate
the Page Table associated with that 4 MB range. The
second 10 bits are used to index into the Page Table to

find the PTE. The PTE
entry contains the high order
twenty bits of the real
memory address of the page.
The low order twelve bits
from the original virtual
address, capable of represent-
ing offsets 0-4095 into the
page, are added to the PTE
entry to form the full 32-bit
physical memory address.

Since virtual address
translation is a repetitive
task, significant performance
benefits are achieved by
buffering these mapping
tables in very fast memory on
board the processor chip.
Like other computer
architectures that support
virtual memory, Intel
processors provide hardware
Translation Lookaside
Buffers (TLBs) to speed up
virtual address translation. A
context switch occurs when
Control Register 3 is
reloaded to point to a new
set of per process Page
Tables. The performance
impact of a context switch
encompasses flushing the
TLB, slowing down instruc-
tion execution for a
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transitional period known as a cache cold start.
The PTE also contains a “Valid” page flag which

indicates whether or not the virtual memory address has a
counterpart in physical memory. In the course of perform-
ing virtual memory addressing, whenever the processor
encounters a PTE with the invalid bit set it generates an
interrupt. It is up to the operating system to determine the
root cause of the virtual address translation exception. It is
possible the executing program has merely referenced a
virtual address which exists, but is not physically present.
This is a page fault. The operating system is then respon-
sible for fetching the designated page from the paging file
where it is stored, copying it into some available physical
memory slot, and re-executing the failed instruction.
Alternatively, due to a program error, the address specified
may not actually be a valid one, i.e., one that was never
allocated in the first place. Upon determining that this sort
of (very common) programming error has occurred, the
operating system performs a diagnostic memory dump and
terminates the application program. Windows NT, for
example, writes Access Violation diagnostics to the end of



the Dr. Watson log file, ����������	� stored in the
��������� root directory.

To assist in trapping common programming mistakes,
Windows NT deliberately designates x’0001 0000’ as the
starting point for all programs, marking the first 64K of
virtual memory addresses as invalid. A common pro-
gramming error is to reference an inadvertently null
pointer, leading to an address calculation that points to
low storage. By flagging the Page Table entries for the
first 64K of each process address space as invalid, NT is
able to catch many of these errors before they are
destined to do serious damage. The 64K boundary is a
legacy of Intel’s 64K segmented virtual addressing
scheme for the original 80286 processors.

As illustrated in Figure 6, the Intel IA-32 hardware
PTE contains a number of status bits. Bit 0 of the entry
is the “Present” bit that indicates whether of not the
virtual address currently resides in physical memory. Bit 0
determines how to interpret the remainder of the
information stored in the PTE. If Bit 0 is set, the
interpretation of the other bits is determined as shown.
For a valid page, the high order twenty bits of the PTE
reference the address of the physical memory location
where the page resides. Bits 1-6 are maintained by the
hardware to give additional status information about the
real memory page. Bit 2, for example, is an authorization
bit set to prevent programs executing in User mode (Ring

3) from accessing operating system
memory locations allocated by kernel
threads running in Ring 0. The
“Dirty” bit 6 is set whenever the
contents of a page are changed. The
operating system refers to the Dirty
bit during page replacement to
determine if the copy of the page on
the paging file is current. Bit 5 is an
“Access” bit that the hardware sets
whenever the page is referenced. It is
designed to play a role in page
replacement, and it is used for that
purpose by Windows NT under
circumstances which will be de-
scribed shortly. Likewise, Windows
NT turns off the Read/Write bit to
protect code pages from being
overwritten inadvertently by execut-
ing programs. NT does not utilize
additional Intel hardware status bits
designed to influence the behavior of
the processor cache.

The Page Table format used in
the Digital Alpha, which Windows
NT also supports, is conceptually
similar, but somewhat different in its
implementation. In 32-bit addressing

Intel 486 Page Table entry
0123456791112

PRWU/SWTCDAD
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mode, the Alpha uses 8K pages. The Page Directory
lookup uses the first 8 bits of a virtual address, while the
next 11 bits are an offset into the Page Table entries.
These architectural differences were crucial to the design
of the NT page replacement policy, which was intended to
function on both Intel and Digital Alpha hardware. The
Alpha also maintains a similar set of page status bits, with
at least one striking difference — there is no “Access” bit.
When deciding how to replace pages on the Alpha, the
operating system gets no information from the hardware
on an executing program’s pattern of reference to its virtual
addresses. The Alpha does not use separate Write protec-
tion and Dirty bits either; it uses one Write bit that
essentially serves both functions.

Portability. What is unique about the approach to
virtual memory management that NT employs is that it is
designed to satisfy processor specific-hardware require-
ments, while retaining a large degree of hardware
independence. Over its relatively brief lifetime, versions of
Windows NT have been developed that support quite
distinct and different MIPS, PowerPC, Digital Alpha, and
Intel IA-32 processor architectures. The NT component
responsible for achieving a high degree of portability is
known as the Hardware Abstraction Layer, or HAL. The
NT OS kernel only interfaces to hardware functions like
those that are required to perform virtual memory man-



agement by calling HAL interfaces, which, in turn, are
performed by processor-specific code. Porting Windows
NT, which is in the main written in “C” language, requires
first a “C” language compiler for the architecture, and then
developing a processor-specific HAL module.

One example of NT’s platform independence is the way
it utilizes the storage locations associated with PTEs when
they are not subject to the hardware’s strict specification.
When a PTE is invalid, NT is able to store processor-
independent information regarding the page, as illustrated in
Figure 7. The format is the same whether NT is running on
Intel or Alpha hardware. Information about where the
page is located within the paging subsystem is stored in
the PTE for “invalid” pages, as shown. The paging file
number (PFN) is a 4-bit index that is used to reference up
to 16 unique paging files. The 20-bit paging file offset
then references a specific paging file offset up to x’10000’
or 1 million. A transition bit is maintained by the operating
system for determining which pages in a process working
set are active. Its role in page replacement is discussed
below. The Prototype PTE is a mechanism for mapping
shared memory pages into multiple process address spaces.
Its use is beyond the scope of the current discussion.

Maintaining a high degree of portability across a wide
variety of processor architectures means ignoring opportu-
nities to exploit some unique processor-specific hardware
features. This is a temptation that operating systems
developed and maintained by hardware manufacturers are
usually unable to resist, something that has undermined
the goal of portability espoused by the original developers
of Unix. What Windows NT may sacrifice in performance
by not being optimized around any specific computing
hardware, it gains in portability. The goal of portability has
influenced the development of the page replacement
policies that NT employs to manage virtual memory. The
NT page replacement policy was designed to work with
processor hardware such as the Digital Alpha which does
not maintain a hardware Access bit. Early versions of the
operating system ignored the hardware Access bit even
where it was available, namely on Intel processors. Later
releases of NT, beginning with version 4.0, do make use of
the Intel hardware Access bits under some circumstances,

014591112
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the inevitable result of Microsoft’s
decision to optimize NT for its most
widely used hardware platform.

Page Replacement.
A common problem virtual memory

operating systems face is what to do
when a page fault occurs, a valid page
must be retrieved from the paging file,
and there is little or no room in
physical memory for the referenced
page. Following a policy of allocating

real memory page slots on demand as they are referenced
inevitably leads to a situation where physical memory fills
up. Then, when a new page is referenced, something has
to give. The general solution adopted by operating system
designers involves identifying currently resident memory
pages which have not been referenced recently and removing
them from memory. (Before “dirty” pages can be removed,
the operating system must first copy their contents to the
paging file.) This popular solution to the page replace
problem is designated Least Recently Used or LRU, which
captures the overall flavor of the strategy. LRU, strictly
speaking, is not optimal. Its performance can be improved
upon substantially if an executing program provides “hints”
with regard to its expected pattern of memory reference. In
the absence of specific hints from the program, however,
LRU generally performs well over a wide range of circum-
stances. In particular, its behavior is very well understood
since it is practiced in a variety of contexts not limited to
just virtual memory management. [6]

A popular variant of LRU for virtual memory page
replacement is known as the “Clock” algorithm. This is
practiced in both MVS and Unix, for example. Every clock
interval (in MVS, once per second), an OS memory
management function resets all hardware access bits. In
the process, the OS accumulates information about how
long pages resident in physical memory have gone
unreferenced. This aging information about resident pages
is then used to order them by the time of their most recent
reference. Using this ordering, page replacement proceeds
by replacing the oldest resident pages first. Least Recently
Used pages are subject to replacement when physical
memory is depleted. The Clock algorithm has known
limitations, not the least of which is its difficulty scaling to
very large memory configurations. For instance, the aging
algorithm executes in time proportional to the size of it
resident page frame database. An optimization introduced
in the IBM mainframe MVS operating system, for
example, varies the frequency of Clock updates based on
the age of the oldest page in the system. [7]

Global and Local LRU. Page replacement policies
commonly maintain a pool of available space from which
new allocations can be satisfied on demand, then trigger a



cycle of page replacement when the pool drops below some
threshold value. In many operating systems, this is called
page stealing, but Windows prefers a more polite designa-
tion, namely page trimming. Call it what you will, the
specific issue is that one program’s pattern of memory
access can influence the performance of other executing
programs since they all share a common memory pool.
This is generally the trade-off between a policy of global
LRU, which treats all process virtual address spaces on an
even footing, and local LRU, which applies the page
replacement on a process by process basis.

While it has some global aspects, Windows NT
decisively practices a localized per process working set
management policy. Each process has a designated
�	�����������������, initially set by default by the
operating system. The default maximum process working
set size is 345 pages on any system with at least 64 MB of
RAM installed. Any process running at its maximum value
that attempts to reference a new page finds that NT
removes an existing page before adding the new one to the
process working set. Based on the availability of physical
memory, the working set maximums of all processes
running at their maximums are adjusted upward. This
allows processes that require it to add more pages to their
designated maximums and grow their working sets over
time. The global triggering threshold for this working set
maximum adjustment is that it occurs every second that
the pool of memory available for new allocations (memory
counter Available Bytes) is approximately 4 MB or more.

Process working sets

Standby
List

Free
List

Zero
List

Transition Faults

Demand
Zero

Faults

Z

ero
Page Thread

Aging

Changed Pages

Paging
Files

Working
set

trimming

Available Bytes

}

So long as this cushion of available memory exists, process
working set maximums are allowed to drift upward. [8]

NT also provides an Application Programming Inter-
face (API) to allow individual processes to specify their
real memory requirements to the operating system and
take the guesswork out of page replacement. Many
applications developed specifically for Windows NT,
including Microsoft SQL Server and Internet Information
Services utilize a Win32 API call to inform Windows NT
of their physical memory requirements. SQL Server, for
instance, establishes process working set minimum and
maximum values based on a database tuning parameter.
Windows NT will only trim pages from a process working
set below its minimum value when the system is under
stress, defined as when the number of ��������������� falls
below 1 MB.

Soft faults. Windows NT’s page replacement policy is
designed to obtain information about memory reference
patterns without recourse to hardware access bits. (Where
hardware access bits are available, in Intel hardware, for
example, NT does use that information to supplement its
basic policy in some circumstances.) Information about
memory reference patterns is obtained by periodically
trimming all pages above a process’s working set mini-
mum, again set by default unless specifically overwritten.
The system default for an NT Server with at least 64 MB
establishes working set minimums of 50 pages per process.
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Trimmed pages are not stolen
definitively. Instead, they are
marked as being in a state of
transition. In the PTE, the Valid
bit is turned off, but the value of
the real memory offset is retained
while the page is in the transitional
state. The next time a trimmed
page in transition is referenced, a
page fault is occurs. Responding to
the transition fault, the operating
system immediately returns the
page to the Valid state, adds it to
the process working set, and re-
executes the instruction.

Figure 8 illustrates the overall
page trimming mechanism. The
size of the three threaded list
structures, the Standby List, the
Free List, and the Zero List, is
calculated as the number of
Available Bytes, the Memory
Counter accessible using the NT
Performance Monitor. (Perfmon
reports these values in bytes for
consistency across the Intel and
Digital Alpha platforms which use



different page sizes. The linked list structures themselves
actually reference pages.) New page allocations are
generally satisified from the Zero List. A low priority
system Zero Page thread has responsibility for taking
pages off the free list and zeroing their contents. (This is
done for security reasons.) Pages transition from the
Standby List to the Free List as required by the demand
for new allocations. Page trimming is invoked once per
second by default. It is also triggered on demand when the
number of available pages drops below 1 MB. Trimmed
pages that are modified must be written to disk before
transitioning to the Free List. Modified pages are written
in bulk to disk by Modified Page Writer threads, again
based on threshold values being exceeded. The Modified
Page Writer threshold value for a system with 64 MB or
more of RAM waits until 300 dirty pages accumulate
before physical disk writes are initiated.

Transition faults are also designated as “soft faults” in
some Windows NT documentation because they are
resolved without performing the time-consuming paging
file I/O operations associated with resolving “hard” page
faults. Performance analysts accustomed to more conven-
tional LRU page stealing algorithms may need some time

to warm to this approach. One byproduct is the very large
number of transition faults that can occur. The memory
Counter Page Faults/sec includes both transition faults and
cache faults. (Cache faults are read file requests automati-
cally redirected to the NT paging subsystem that miss the
file cache.) From a configuration and tuning perspective, it
makes sense to focus on the memory Counters which break
out page faults into the three relevant categories:

• Transition faults/sec: the “soft” page faults described
above

• Cache faults/sec: a byproduct of normal file I/O
operations

• Page Reads/sec: “hard” page faults which require
demand paging file I/O operating to restart the
running thread that incurred the request.

Figure 9 provides an example of an NT performance
report that takes this approach. This example illustrates a
128 MB NT Workstation reporting 40 MB worth of
Available Bytes at the same time it was experiencing over
300 transition faults per second. Meanwhile, the number
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of “hard” page faults/second never
exceeds 25, a much more reasonable
number for a single disk system. By
the way, hard page faults only impact
the execution status of the thread, not
the entire process. Other threads in
the same process can be scheduled for
execution.

An alternative reporting approach is
to calculate the number of “hard” page
faults by subtracting transition faults
and cache faults from the total number
of page faults. The remainder should
be equal to the number of “hard”
faults. Experience in making this
calculation indicates there is some
logical inconsistency in the measure-
ment data because the number of hard
fault caluclated in this fashion is
sometimes a negative value.

Configuration guidelines. This
brings up the usual matter of deter-
mining an optimal number of hard
page faults for a particular environ-
ment. Rather than merely provide the
usual answer, which is, “It depends,”
let’s try to see what it depends on. Any
usable configuration guideline that
attempts to quantify the number of
“hard” page faults a particular NT
configuration is capable of performing
should consider the following:



• the number of physical disks available for paging,
since each disk is a single server with some finite I/O
throughput capability

• the speed of these disks

• other I/O capacity constraints, such as the speed of
the bus connections or the fact that disk I/O
competes with other peripherals for access to the
shared PCI bus, and

• the fact that any paging to those disks reduces
proportionally their availability to satisfy normal file
I/O requests

Given that most PC-based Server architectures have
limited I/O bandwidth, it seems reasonable to suggest
keeping paging I/O traffic to a minmum, perhaps never to
exceed 10-20% of overall disk bandwidth.

Using the Intel hardware access bits. Given that 98% or
more of all copies of the NT operating system that are sold
run on Intel hardware, it was
inevitable that some
optimizations for the Intel
platform would creep into
the OS. Without modifying
the basic transition fault
mechanism, the NT
developers have found a way
to exploit the hardware
memory access bits used to
determine the age of a page
that Intel IA-32 maintaines.
In its original form, the page
trimming algorithm treats
every process working set as
a FIFO (First In, First Out)
queue, stealing from the
front and transition faulting
back into the working set at
the rear of the queue.
Windows NT Server on
uniprocessors was modified
to trim unaccessed pages
from the working set first,
then reset the Access bit of
each page remaining in the
process working set at the
conclusion of the page
trimming cycle. This has
the effect of adding an
element of the popular
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Least Recently Used page
stealing algorithm to the
NT page trimming.

Both Windows NT Workstation and instances of Server
running on multiprocessors run the original page trimming
routine that does not bother with the hardware Access bits.
On multiprocessors, Microsoft developers reported a
performance problem when the trmming routine resets the
hardware Access bits of all executing processes. Processes
currently executing on different processors from the one
where page trimming is running have their TLBs flushed
when the Access bits are reset. The performance hit for
threads executing on other processors, especially associated
with applications like SQL Server that perform their own
working set management, when TLBs are flushed was
significant enough for Microsoft developers to revert back to
the original FIFO scheme.

Measurement and Prediction.
The preceding discussion highlights several key metrics

for tracking the impact of virtual memory addressing under
Windows NT. In this section, I will look at the memory
and paging Counters that are available and suggest suitable



guidelines for reporting on NT virtual memory perfor-
mance. Finally, I discuss details for calculating a memory
contention index that can be used predictively to anticipate
performance problems.

Memory Object. In the main, the performance metrics
associated with system memory allocation and paging are
Performance Monitor Counters grouped under the
Memory Object. For convenience, I divide these Counters
into three areas: virtual memory allocation, physical
memory allocation, and paging activity. A brief description
of the key metrics follows [9]:

Virtual memory allocations. The key metrics are the total
number of 
	������������� and the ��
	����������������
#��. The latter is the ratio between Committed Bytes and
the Commit Limit. Useful configuration guidelines for
medium to large scale systems is that ��
	����������������
#�� not exceed 70%. When ��
	�����������������#��
exceeds 90%, NT automatically extends those paging files
with flexible extents. This can introduce embedded seek
operations into paging file I/O requests.

When multiple paging files are configured, it is sometimes
useful to access the Paging File Object, which is instanced
by paging file, and report the ��#���� Counter. The
advantage of multiple paging files is the ability to utilize
multiple physical disks for paging operations.

Physical memory allocations. Physical memory allocated to
operating system functions is recorded in six Counters, as
illustrated in Figure 10: ���������������, �		���	��$����
�����, �		�������� �������������, !������
�
%�� �������
�����, !������
	��� �������������, and !������"�����
 �������������. The sum of these six Counters subtracted
from the total amount of RAM installed shows the
portion of physical memory used by process address spaces.
��������������� represents the sum of three lists, the Zero
List, the Free List, and Standby List. When ���������
������exceeds approximately 4 MB, process working set
minimum and maximum threshold used to control page
trimming are allowed to be adjusted upwards. A system
showing less than 1 MB ��������������� is under stress.

The Process &	��������� Counter (in bytes) reports the
size of each per process working set. Resident pages from
shared memory Objects, which are quite common due to
the resuse of common program runtime DLLs, are
counted in each process address space they are referenced
in. The '(	��� instance of the Process Object reflects this
double, triple, quadruple, etc., counting of shared memory
Objects.

Paging activity. �����)�����*��
 is the sum of 
�
%��)�����*
��
, (�������	��)�����*��
 (so-called “soft” faults), and
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“hard” page faults. Very little can be done about the
number of transition faults that occur because the transi-
tion fault mechanism is essential to NT’s page replacement
policy. It is the way page aging information is obtained.
"������+��	�)�����*��
�represent application requests for
new pages, including new pages acquired during program
loading and initialization.������� ���*��
 counts hard
page faults directly. ������&������*��
 counts the number
of Modify Page Writer thread-initiated write operations.
Since NT typically performs bulk paging operations, the
number of ��������$��*��
 is normally greater than the
number of  ������ ���*��
. Likewise for ������	��$��*��

and �����&������*��
. Any paging I/O performed by the
operating system normally reduces the capability of the
system to perform file I/O operations on behalf of applica-
tion programs. A suggested configuration guideline is that
not more than 10-20% of the available disk I/O bandwidth
be absorbed by system paging operations.
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Memory contention index. Besides monitoring mea-
sures of virtual memory, physical memory, and paging
activity, it is useful to develop predictive measures. One
useful calculation is to derive a memory contention index
which may be of use in predicting hard paging activity. A
useful working hypothesis is that demand paging activity,
in general, is caused by virtual memory address spaces
contending for limited physical memory resources. A
simple index computed from the ratio of virtual memory

	������������� to available RAM can have predictive
value. See [10] for a fuller exposition. Because of the
limited I/O bandwidth that is usually available, this author
monitors this memory contention index and normally

intervenes (where possible) to add RAM before the index
reaches a value of 2:1.

Another useful memory contention index can be
calculated as the ratio of �		�������������:�		�������
 ���������������This index corresponds to the virtual
memory demand associated with the system’s pageable
pool and the actual number of resident pages within that
pool. As this ratio increases, there is more contention for
physical memory, as illustrated in Figure 11. While much
more investigation is warranted, the correlation between
this memory contention index and the hard page fault rate
shown in Figure 11 suggests this may be a promising line
of inquiry.

Memory utilization vs. Paging
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