
1

Optimizing the performance of Wintel applications

The best medicine for most sorts of performance problems is invariably preventative.
Despite advance in software performance engineering [1,2], developing complex
computer programs that are both functionally correct and efficient remains a difficult and
time-consuming task. This paper specifically looks at tuning Windows NT applications
running on Intel hardware from the perspective of optimizing processor cycles and
resource usage. Fine-tuning the execution path of code remains one of the fundamental
disciplines of performance engineering.

To bring this topic into focus, I will describe a case study where an application designed
and developed specifically for the Microsoft Windows NT environment is subjected to a
rigorous analysis of its performance using several commercially available CPU execution
profiling tools. Since one of the development tools used to optimize the application
program under consideration requires an understanding of the internal workings of Intel
processors, this will justify an excursion into the area of Intel processor hardware
performance.

An application tuning case study. The application that is the target of this analysis is a
C language program that was written to collect Windows NT performance data
continuously on an interval basis. The performance of this application is quite important.
Since the app is designed primarily for use as a performance tool, it is very important that
it run efficiently. A tool designed to diagnose performance problems should not itself be
responsible for causing performance problems. Moreover, the customers for this
application, many of whom are experienced Windows NT performance analysts, are a
very demanding group of users.

Figure 1 illustrates the application structure and flow, which is straightforward.
Following initialization, the program we developed enters a continuous data collection
loop. Inside this loop, Windows NT services are called to retrieve selected performance

data across a well-documented Win32 interface. The program, which consisted of a
single executable module called HQTIVJWW�I\I, simply gathers performance statistics
across this interface and logs the information collected to a local disk file. It is the
optimization of the code within this inner loop that was the focus of this study.

initialization

loop until cycle end = TRUE;

Win32 API calls to retrieve performance data;

calculate;

Write data to file;

end loop;

2

Some additional details about the dmperfss application’s structure and logic will be
important to this discussion. To a large extent, the program’s design is constrained by the
Windows NT Win32 Application Programming Interface (API) that is the source of the
performance data being collected. The performance data in Windows NT is structured as
set of Objects, each with an associated set of Counters. (Individuals not accustomed to
object-oriented programming terminology might feel more comfortable thinking about
Objects as either records or rows of a database table and Counters as fields or columns in
a database table.) There are approximately 100 different performance Objects defined in
Windows NT at this writing, base Objects which are available on every system and
extended Objects which are only available if specific application packages like MS SQL
Server or Lotus Notes are installed. Within each Object, specific performance Counters
are defined. Approximately nineteen different types of Counters exist, but generally NT
Counters fall into three basic categories: accumulators, instantaneous measures, and
compound variables. These categories of Counters are described in greater detail below.

Counter types. Accumulators are simple event Counters maintained within NT and
various NT applications. A good example is a Counter which is incremented every time a
page fault occurs. At the end of any given collection interval, this Counter records the
accumulated total number of page faults that have occurred on the system in question
since the time it was booted. A performance monitor application like HQTIVJWW�I\I
gathers this information, subtracts the value obtained during the previous collections
interval, and divides by the interval duration to derive a value that corresponds to the
page fault rate during the last collection interval. Instantaneous Counters simply record
the value of some metric right now. A good example is a Counter that reports the current
number of Available Bytes. This is a single observation of this value at that moment in
time, with no attempt to understand its range and variation over an interval. The dmperfss
application simply reports this current value; no additional calculations are involved.
Compound variables are calculated measures where the performance monitoring interface
provides all the values that needed to perform some predefined calculation. A good
example is a Counter which reports the fraction of used disk space on an NT logical
partition. The performance monitoring interface provides both the number of bytes used
and capacity of the disk partition in a single compound Counter. A performance
monitoring application like dmperfss must understand how to calculate the corresponding
Counter value each interval.

The HQTIVJWW�I\I�application retrieves designated Objects one at a time by making
a call to the Win32 function 6IK5YIV])\. Having collected a data sample, the program
then makes the appropriate calculations for all the Counter variables of interest, and
writes the corresponding Counter values to a data collection file. In some cases, there are
multiple instances of an Object that need to be reported. For example, a computer system
with four processors reports four instances of the processor Object each collection
interval. In two cases, parent-child relationships are defined for Object instances. Logical
disk instances have a parent Physical Disk instance, and threads are associated with a
parent process. The significance of this relationship is that both the parent and child
Object instances are retrieved using a single call to the performance monitoring interface.

3

At the time of the study, there were no apparent performance problems with the
HQTIVJWW data collection application. The program is most often used to retrieve a
carefully crafted subset of the available data using collection intervals ranging from 1 to
15 minutes, with 5 five minutes being the average. At those rates of data collection, the
overhead of HQTIVJWW data collection was uniformly much less than 1% additional
processor utilization during the interval. Nevertheless, a good overall assessment of the
performance of an application is almost always valuable in guiding future development.
Furthermore, there are good reasons to run data collection at much more frequent
intervals than current customer practice.1 Consequently, we wished to investigate whether
it would be feasible to build a monitoring program that would collect certain data at much
more frequent intervals – perhaps as frequently as once per second, or even more
frequently.

The development tools. The analysis of the performance of this application program was
initiated at a point in the development cycle where the code was reasonably mature and
stable. Once a program is functional, it is appropriate to tackle performance optimization.
But it should be stressed that performance considerations should be taken into account at
every stage of application design, development, and deployment.

The study focused on analyzing the code execution path using commercially available
profiling tools. CPU profiling tools evaluate a program while it is executing and report on
which sections of code are executing as a proportion of overall execution time. The
execution profile thus derived allows programmers to focus on particular routines that
account for the most execution time delay. This sort of information supplies an empirical
element to performance-oriented program design and development, which is otherwise
sorely missing. Without reliable, quantitative information on code execution paths,
programmers tend to rely on very subjective criteria to make decisions that affect
application performance. I like to say that these tools eliminate a lot of idle chatter around
the coffee machine about why a program is running slowly and what can be done to fix it.
Profilers provide programmers with hard evidence of where their programs are spending
their time during execution.

A code profiler also provides hard data to help evaluate alternative approaches that a
programmer might consider to speed up program execution. For instance, which compiler
optimization options are worthwhile, which sections of code should be targeted for
revision, and where inline assembler routines might prove most helpful. In planning for
the next cycle of development, the results of a code execution profile improve the
decision-making process.

The code in the program under analysis here, as most programs written for the Windows
environment do, makes extensive use of the Win32 application programming interface
and C run time services. One highly desirable outcome of a code profiling exercise is

1 For instance, accumulator values, which are running totals, and instantaneous values are both collected at
the same rate. Would it be possible to collect instantaneous values more frequently and then summarize
these sample observations? See [3] for a good discussion of the reasons for running data collection at short
intervals.

4

greater understanding of the performance impact of various system services, which is
where many programs are spending the majority of their time during execution. The time
spent inside these calls to system services is a like black box, which means the
programmer can do very little to influence their performance. But understanding their
performance impact at least helps the programmer understand how to use them more
effectively. In cases where there are no viable alternatives to these system services, the
programmer can learn to interact with them more effectively.

The use of the following profiling tools was investigated during the course of this study:

l the profiler option in the Microsoft Visual C++ compiler version 5,

l the Rational Visual Quantify execution profiler, and

l the Intel vTune version 2.5 optimization tool.

All three are popular commercial packages. In selecting these and only these specific
tools, no attempt was made to provide encyclopedic coverage of all the code profiling
options that are available for the Windows NT/Intel environment. Instead, we tried to
focus on an in-depth analysis using a few of the better known and widely available tools
for NT program development to solve a real-world problem.

The Microsoft Visual C++ optimizing compiler was a natural choice because all the code
development was performed using this tool. It is a widely used compiler for this
environment, and its built-in code profiling tool is a natural first choice for developers of
all kinds who might be reluctant to incur the expense of an additional software package.
The Rational Visual Quantify program is one of the better known profiler tools for C and
C++ language development. Rational is a leading manufacturer of developer tools for
Unix, Windows, and Windows NT. The Visual Quantify program features integration
with the Microsoft Visual Studio development environment. It is usually reviewed in
surveys of C++ development tools published in popular trade publications. [4,5] Finally,
the Intel vTune program was used because this has garnered wide acceptance within the
development community as an optimization tool developed by Intel specifically for
programs that run on Intel hardware. vTune is a standalone program, and, we discovered,
is more oriented toward assembly language development than typical application
development using C or C++.

Overall, we found both add-on packages to be extremely useful and well worth their
modest investment. Visual Quantify provides a highly intuitive user interface. It extends
and widens the CPU profiling information that is available through the built-in facilities
of MS Visual C++ by incorporating information on many system services. We found it
greatly increased our understanding of the code’s interaction with various Windows NT
system services. VTune supplemented this understanding with even more detailed
information about our code’s interaction with the NT run-time environment. VTune’s
unique analysis of Intel hardware performance provides singular insight into this critical
area of application performance.

5

The Case Study.

Visual C++ profiler.

The first stage of the analysis used the code execution profiler built into MS Visual C++.
This is a natural place for any tuning project to begin given that no additional software
packages need to be licensed and installed. Run-time profiling is enabled from the Link
Tab of the Project, Settings Dialog box inside Developer Studio, which also turns off
incremental linking. Profiling can be performed at either the function or line level.
Function level profiling provides the number of calls to the function and adds code which
keeps track of the time spent in execution while resident in the function. Line profiling is
much higher impact and also requires that debug code be generated. In this exercise, I
will only report on the results of function profiling.

You select Profile from the Tools menu to initiate a profiling run. Additional profiling
options are available at run time. The most important of these allow the user to collect
statistics only on specific modules within a program or restrict line profiling to certain
specific lines of code. At the conclusion of the run, a text report is available in the Output
window under the Profile Tab. You can view the report there or import the text into a
spreadsheet where the output text can be sorted and further manipulated. The first few
lines of the function level Profile report are illustrated in Figure 2. The report output is
automatically sorted in the most useful sequence, showing the functions in order by the
amount of time spent in the function.

The data in Figure 2 is from a profiling run of the dmperfss program that lasted about six
minutes. The program was set to collect a default collection set once a second and write

Module Statistics for dmperfss.exe

 Time in module: 283541.261 millisecond

 Percent of time in module: 100.0%

 Functions in module: 155

 Hits in module: 11616795

 Module function coverage: 72.3%

 Func Func+Child Hit

 Time % Time % Count Function

 248146.507 87.5 248146.507 87.5 249 _WaitOnEvent (dmwrdata.obj)

 8795.822 3.1 8795.822 3.1 393329 _WriteDataToFile (dmwrdata.obj)

 4413.518 1.6 4413.518 1.6 2750 _GetPerfDataFromRegistry (dmwrdata.obj)

 3281.442 1.2 8153.656 2.9 170615 _FormatWriteThisObjectCounter (dmwrdata.obj)

 3268.991 1.2 12737.758 4.5 96912 _FindPreviousObjectInstanceCounter (dmwrdata.obj)

 2951.455 1.0 2951.455 1.0 3330628 _NextCounterDef (dmwrdata.obj)

6

this information to a file. The following performance Objects are included in this
collection set: System, Processor, Memory, Cache, Logical Disk, Physical Disk, Process,
Redirector, Server, and Network Segment.

The profiling report itself is largely self-explanatory. The amount time spent in the
function, the amount time spent in the function and its descendants, and a Hit Count are
tabulated. The specific function is identified by name, with the name of the object module
that exports the function beside it in parentheses.

Interpreting the report is equally straightforward. The profiling statistics indicate that the
program spent 87.5% of its execution time in a function called ;EMX3R)ZIRX. The
event the program is waiting for in this function is the Windows NT Timer event which
signal that it is time to collect the next data sample. Notice that the Hit Count for this
function, the number of times this function was entered, is just slightly less than the
number of seconds in the execution interval. This no doubt reflects some delay in
initialization. It seems safe to assume that the program is actually executing the other
12.5% of the time. The WriteDataToFile function, which was entered 393,329 times
accounts for close to 25% of the program’s actual execution time. It appears that this
function is called over 1,000 times for each collection interval.

The only noticeable difficulty in working with the Visual C++ profile report is that it
does not identify the function call parent-child relationships. Notice that the Function call
FindPreviousObjectInstanceCounter is executing 1.2% of the time (about
10% of the program’s actual active time). When functions called by
FindPreviousObjectInstanceCounter are factored in, the function call is
executing 4.5% of the time. Unfortunately, it is not possible to identify the child
functions that are called from a parent function by glancing at the report. Since the
programmer creating the execution profile also has access to the source code, it should be
reasonably simple to trace the function’s execution using the debugger, for example, to
determine what calls the FindPreviousObjectInstanceCounter function
makes to other helper functions. In practice, for a program as complex as dmperfss is, this
is not a trivial exercise.

In practice, while the built-in execution profiler is not as robust as other available tools, it
did help us identify the programs modules that were having the greatest impact on
performance. The C++ Profile report was consistent with later analysis results that honed
in on the same relatively small set of modules that were responsible for a disproportionate
amount of CPU time consumption. While it was not as comprehensive as the other tools
we compared it to, the Microsoft Visual C++ proved to be both easy to use and effective.

Visual Quantify.

Visual Quantify, available from Rational, is an add-on code profiling tool available for
Windows NT that works with Microsoft Visual C++, Visual Basic, and Java running on
Intel hardware. It addresses the major usability limitations we encountered with the
profiler built into the Microsoft Compiler. First and foremost, it has an easy-to-use and
intuitive GUI interface that makes it easy to navigate through the profiling output. But
Visual Quantify (or VQ, for short), I found, is more than just a pretty face. The profiling

7

data it collects extends to a surprising number of system modules and services. VQ
measures the performance impact associated with third party ActiveX and DLL-based
components that your program links to dynamically. It also captures the amount of
processor spent inside a surprising number of Win32 API calls. Acquiring profiling
information on the overhead that the HQTIVJWW program spent outside the executable
certainly proved to be of great benefit in this particular project.

Like the MS VC++ profiler, VQ gathers information at the level of either the function or
the line. VQ provides additional options which allow you to specify when you want the
profiling data collection effort to begin. This lets you, for example, bypass initialization
code that you do not care about so that you can focus on the application’s inner loop.
Another nice feature is the ability to compare two or more profiling runs of the same
program. This is very useful during the iterative process of implementing code changes to
improve performance to ensure that the changes are having the desired effect.

VQ obtains profiling information on dynamically loaded modules called from the target
application at run-time. It runs the application being monitored in its address space and
watches as it calls other modules. So long as the external function being called is
associated with a sharable dll, VQ can instrument it. (Fortunately, most DLLs and OCXs
are sharable.) It does this by copying the module being called into the VQ process
address space and inserting its measurement hooks into this private copy of the code.
Rational calls this technique Object Code Insertion, which it claims to have patented.

The first noticeable thing about running Visual Quantify is how long it takes to get
started. This is because the process of intercepting dynamic program loads, loading a

private copy of the module into the VQ process address space, and inserting the
instrumentation hooks is quite lengthy. Commonly accessed DLLs like MCVSRT40.dll

8

are normally resident in the system when a program begins execution and do not have to
be loaded. In the case of the HQTIVJWW program, VQ initialization took over twenty
minutes before program execution was able to proceed unimpeded. VQ keeps you
entertained during this startup delay with two displays that show the progress of
initialization. The Threads display, illustrated in Figure 3, appears by default showing the
status of the profiling run. The Threads display is a histogram showing activity by thread.
I am not certain why so many threads are displayed here – the application itself only has
two, corresponding to main_66 (top) and thread_17f (the mainly blue squares in the
middle of the screen). It seems plausible that VQ spawns a separate thread to load each
dll. Gray squares in the main_66 thread indicate VQ delays to load the modules and insert
its hooks.

The Log display illustrated in Figure 4 is quite informative. VQ logs each load module as
it encounters it in the course of program execution. Here we see HQTIVJWW�I\I being
instrumented, followed by 2IX%TM���(00, 17:'68�(00, 2)86%4�(00,
7%10-&�(00, etc. When VQ encounters a module that it cannot instrument, like
EYXLTIVJ�HPP, a warning message is printed. Obviously, following the trail of the
modules being called from the main application program, loading them, and
instrumenting them is very time-consuming. One of VQ’s execution time options copies
instrumented load modules to a disk cache. On subsequent VQ runs, the program checks

9

first to see if a current copy of the load module is available from the disk cache. This
speeds up processing on subsequent profiling runs considerably.

Figure 5, which displays the HQTIVJWW functions in order by the amount time spent in
execution, shows just how effective VQ is in instrumenting third party code. Where the
Microsoft VC++ profiler was able to collect data on 155 function calls, VQ provides data
on 616. Eight out of the first eleven modules are functions embedded in
KERNEL32.DLL. VQ shows precisely how long these Win32 API calls take. The first
HQTIVJWW function to make the list is $10_OUTPUT, which is responsible for only 0.03
% of the total execution time. The information VQ provides changed our perspective
from fine tuning the code in HQTIVJWW to improving the way the code interacts with
Windows NT system services. Because it gathers all this additional information, VQ’s
intuitive user interface is even more important. You can open several different windows
at one time, each focusing on a different segment of the program, and you navigate easily
through the code execution path. The screen shots here cannot do justice to just how
effectively designed the interface is.

Of course, this added level of information comes at a price in additional overhead during
the profiling run. Notice that the function call WaitForMultipleObjects accounts for 32%
of the execution time. This is the KERNEL32.DLL function, which is called from the
;EMX3R)ZIRX routine located in HQ[VHEXE�SFN that the C++ profiler found was
consuming fully 87.5% of the time! Because of the amount of measurement overhead, it
is important to accept VQ’s function timing statistics as relative indicators of
performance, rather than absolute numbers. In other words, the proportion of the time the
HQTIVJWW program spent in ;EMX3R)ZIRX compared to ;VMXI(EXE8S*MPI was
consistent across the MS VC++ profiler and VQ. I will describe the effort I made to
validate the measurements from all three sources at the conclusion of this article.

The amount of overhead associated with the VQ measurement technology was enough of
a factor to limit the types of program execution scenarios that I could realistically gather

10

performance information about. In particular, I wanted to assess the performance impact
of collecting different NT performance Objects. The easiest way to do that was to set up a
data collection set that included all available Objects, overriding the program’s default
collection set to use the Master Collection set instead. However, when I tried to run VQ
with HQTIVJWW collecting all available Objects, there was so much measurement
overhead that I was unable to collect data at frequent enough intervals to gather data in a
systematic fashion. I was able to work around the problem easily enough by creating
subsets of the program’s Master Collection set and analyzing them. The overhead
associated with VQ profiling is the one consideration that you have to be aware of when
you are using the program and interpreting its results.

Where VQ excelled was in illuminating the execution path associated with the Win32
services the HQTIVJWW program routinely called and which were responsible for much
of the execution time. Figure 6 shows the Function Detail display that is obtained by
zooming in on the 6IK5YIV]:EPYI)\ function, which is the interface used to collect
performance data in NT. The Function Detail screen displays the program functions that
called 6IK5YIV]:EPYI)\ and the functions called from 6IK5YIV]:EPYI)\. (You

11

can navigate back and forth in the Function Detail to trace the execution path forward and
back.) In the absence of the information VQ provides, the interface to
6IK5YIV]:EPYI)\ is a Black Box. The calls to 6IK5YIV]:EPYI)\ are well-
documented in the Win32 System Development Kit (SDK). Microsoft also supplies a
code sample in the SDK that shows how to support extended Counters across this
interface. But the actual program flow of control is not documented. VQ opens up this
Black Box so that we can get a good look inside.

The NT performance monitor interface. Extended performance Objects in NT are
associated with a perflib DLL which responds to three function calls: 3TIR, 'PSWI, and
'SPPIGX. Figure 7 illustrates the Registry entries that a perflib DLL must create. A
performance monitor application like the NT Performance Monitor or�HQTIVJWW scans
the NT Registry looking for these entries in order to discovery what collection data is
available on a particular machine. The 3TIR function for the performance DLL is then
called initially by the performance monitoring application to enumerate the Objects and
Counters that it can report. The 'SPPIGX function is then performed at regular intervals
to retrieve data. The metadata retrieved from the 3TIR call is used to process the data
buffers retrieved by the 'SPPIGX function. The 'PSWI function is used to perform any
necessary cleanup.

Figure 6 showed that 6IK5YIV]:EPYI)\; is called from two places by HQTIVJWW:
15,350 times from +IX4IVJ(EXE*VSQ6IKMWXV] and just 3 times from
+IX8I\X*VSQ6IKMWXV]. +IX4IVJ(EXE*VSQ6IKMWXV] is called from the
HQTIVJWW data collection loop once an interval for each performance Object, while
+IX8I\X*VSQ6IKMWXV] is called only at initialization to retrieve the performance
Object metadata. Yet the 3 initialization calls are almost as time-consuming as the
interval data collection calls, according to the VQ measurement data.

VQ then breaks down the time spent in 6IK5YIV]:EPYI)\ according to the functions
it calls, most of which are 3TIR, 'PSWI, and 'SPPIGX calls embedded in perllib
DLLs. From the number of function calls executed, we see a one-to-one correspondence
between calls to 6IK5YIV]:EPYI)\ and a number of different perflib DLL Collect

12

functions. What we found surprising was that functions like
'SPPIGX7504IVJSVQERGI(EXE, which is associated with the collection of MS SQL
Server performance data, were being called implicitly. MS SQL Server was installed on
this machine, but the HQTIVJWW program did not explicitly reference the SQL Server
performance Objects. As expected, the perflib DLL 3TIR calls are made just once.
Several of the Open calls are very time-consuming, possibly due to serialization delays

associated with interprocess communication. But since the 3TIR calls are made just
once, the time spent waiting for the perflib DLL to initialize is acceptable. (Besides, there
is nothing we can do to improve someone else’s code.)

Figure 8 shows a graphical view of the execution profile that VQ creates called the Call
Graph. The Call Graph traces the subfunctions called from function
+IX4IVJ(EXE*VSQ6IKMWXV] in the HQTIVJWW�I\I program. The thickness of the
line connecting two functions represents relative amount of time traversing that particular
logical path. This display clearly identifies the program’s critical path of execution, very
useful for zeroing on what sections of code need work. Recall that using the Microsoft
VC++ profiler, it was not possible to measure the execution time in any of the modules
called from +IX4IVJ(EXE*VSQ6IKMWXV] because they were outside the range of the
instrumented program. With VQ, you can see deeply into other processes. In this
instance, at least, we found the insight we gained into the way these system interfaces
work was extremely valuable. They gave us information that is simply unavailable from
any other documented source.

13

Overall, we gave the Rational Visual Quantify program very high marks in usability. It
extends the execution time analysis so that you can look inside many system calls and
interfaces. The user interface is very well designed to allow the user to cope with all the
additional information that is presented.

Intel VTune.

Intel’s VTune product is a CPU execution profiling tool aimed at helping the programmer
create code that is optimized for Intel hardware. VTune samples system-wide activity
using a methodology that runs off the hardware’s timer interrupts. During clock interrupt
processing, VTune figures out what process was executing immediately prior to the
interrupt occurring. Then VTune maps the Program Counter for the thread that was
running into the process virtual address space to figure out what module and code is
being executed. Later, when it has finished collecting data, VTune post processes the
information to produce a very detailed report on just about every routine that is running
on an NT system. The only NT system routines that are not visible to VTune are other
Interrupt Service Routines and Deferred Procedure Calls.

There are several distinct advantages to this approach. First of all, this approach generates
very low overhead. We made our first run with VTune using the same set up that we used
under VQ – the HQTIVJWW application was set to collect the default Collection set once
per second. During this run, VTune identified that 90% of the system activity occurred in
a module called ,EP�HPP. HAL is the hardware-specific NT Hardware Abstraction
Layer. Apparently, this is where the code for the system idle thread is situated that NT
dispatches when there is no other work for the system to perform. With the default
Collection set being harvested once per second, the system was cruising at less than 10%
busy with VTune running.

So another advantage of VTune is that it sees all system activity, even into the NT
operating system kernel and the HAL. Because these operating system modules are not
shareable DLLs, they are not visible to tools like Visual Quantify. Finally, this
measurement methodology represents the only way to get good performance data on
more complex applications, involving, for instance, multiple process address spaces,
interprocess communication, etc. In other words, VTune may be the best way to gain
insight into Web site applications that interact with back-end databases, or COM-based
applications that run within the context of the Microsoft Transaction Server.

In the study performed here, reacting to the initial results reported by VTune (as
described above), we decided it would be helpful to try and accumulate more samples
related to HQTIVJWW activity and less involving the NT idle thread. Consequently, we
changed the collections parameters for HQTIVJWW to collect all available performance
Objects once per second. Remember that under VQ it was impractical to profile the
program under those circumstances; but using Vtune, this scheme worked just fine.

Figure 9 illustrates the VTune output reports that are available. A Modules Report is
shown from an interval where HQTIVJWW was executing, collecting the full Master
Collection set once per second during an approximately five minute interval. All the
modules detected in execution during that interval are listed on the left side of the chart in

14

alphabetical order. The chart is a histogram showing the amount of CPU time spent
inside each module. Each vertical bar represents 10% CPU consumption.

As can be seen, this VTune report is so detailed that it is quite hard to read. By clicking
on a section of the chart, you can zoom in to see more detail. See Figure 10. There are no
other sort options for this display, which also contributes to the difficulty in manipulating
the display. Figure 10 zooms in on the portion of the chart in Figure 9 where it just so
happens that two or three modules that are consuming a good deal of CPU time sort
together. These modules are NT operating system routines, RXHPP�HPP and
RXSWOVRP�I\I. Neither of these operating systems modules was visible using any of
the other profiling tools.

Figure 11 illustrates the ability in VTune to zoom in on specific modules. This is a
picture of the HQTIVJWW executable in virtual storage, showing the code addresses
where VTune detected activity, which are then mapped to program modules. Here the
interface is a bit more flexible, with various sort options available for program hot spot
analysis. In this view, modules are sorted by relative address in the load module.

The VTune hotspot analysis identified two functions inside HQTIVJWW that accounted
for more than 70% of the activity inside the process address space. The two modules
VTune identified were 2I\X-RWXERGI(IJ and
-W4VIZMSYW%RH4EVIRX7EQI-RWXERGI. These VTune results correlate well with
the original MS C++ profiler and VQ runs. MS C++ found high activity inside
2I\X-RWXERGI(IJ and *MRH4VIZMSYW3FNIGX-RWXERGI'SYRXIV, the parent
function that calls -W4VIZMSYW%RH4EVIRX7EQI-RWXERGI internally. (Reference
Figure 1.) VQ also identified -W4VIZMSYW%RH4EVIRX7EQI-RWXERGI as one of the

15

most heavily utilized modules with an extremely high number of functions calls.
(Reference Figure 5).

Figure 12 shows the detailed analysis VTune performed on the code being executed in
one of the modules under consideration, 2I\X-RWXERGI(IJ. Here execution time is
mapped to the actual machine code that was generated by the C++ compiler. This is the
area in which VTune stands above the crowd. There are six machine instructions
associated with this routine, accounting for fully 44.39% of the CPU time consumed by
the process. You can see how VTune breaks down the CPU consumption instruction by
instruction. Interpreting the report output in Figure 12, we discovered, requires becoming
more familiar with the Pentium hardware and its performance characteristics.

Intel Pentium hardware. VTune, we discovered, is targeted specifically for programs that
need to execute on Pentium hardware. The program provides an analysis of program
execution behavior on the Pentium that is very detailed and informative. It turns out that
this analysis is not as useful for programs executing on newer Intel hardware, such as the
Pentium Pro or Pentium II. However, learning how to use this detailed information means
understanding quite a bit about the way the Pentium (and Pentium Pro) processor chips
work.

16

The Pentium is a fifth generation microprocessor running the Intel x86 instruction set.
Hardware designers [see, for example 6] refer to the Intel x86 as a CISC (Complex
Instruction Set Computer), a style of hardware that is no longer in style. Today, hardware
designers generally prefer processor architectures based on RISC, Reduced Instruction
Set Computers. The complex Intel x86 instruction set is a legacy of design decisions
made twenty years ago at the dawn of the microprocessor age when RISC concepts were
not widely recognized. The overriding design consideration in the evolution of the Intel
x86 microprocessor family was maintaining upward compatibility of code that was
developed for the original 8086 machines.

Figure 13 summarizes the evolution of the Intel x86 microprocessor family starting with
the 8086, first introduced in 1978. As semiconductor fabrication technology advanced
and more and more transistors were available to the designers, Intel’s chip designers
added more and more powerful features to the microprocessor. For example, the 80286
(usually referred to as the 286) was a 16 bit machine with a form of extended addressing
using segment registers. The next generation 386 chip maintained compatibility with the

286’s rather peculiar virtual memory addressing scheme, while it implemented a much
more straightforward 32-bit virtual memory scheme. In contrast to the 16-bit 64K
segmented architecture that was used in the 286, the 386 virtual addressing mode is
known as a “flat” memory model.

The extra circuitry available in the next generation 486 processors introduced in 1989
was again used to create a higher performance chip with more built-in features. The 486
microprocessor incorporated floating point instructions (available in an optional
coprocessor during the days of the 386) and a small 8K level 1 code and data cache.
Including a small cache memory meant that the 486 could also speed up instruction using
pipelining. Pipelining is a familiar processor speed up technique that attempts to exploit
an inherent parallelism in the process of decoding and executing computer instructions.
The 486 breaks instruction execution into five stages, as illustrated in Figure 14:

D1PF D2 EX WB

P r o c e s s o r Y e a r C lo c k S p e e d
(M H z)

B u s W id th
(b its)

A d d r e s s a b le
M e m o r y

T r a n s is to r s

8 0 8 0 1 9 7 4 2 8 6 4 K 6 ,0 0 0
8 0 8 6 1 9 7 8 5 -1 0 1 6 1 M B 2 9 ,0 0 0
8 0 8 8 1 9 7 9 5 -8 8 1 M B 2 9 ,0 0 0

8 0 2 8 6 1 9 8 2 8 -1 2 1 6 1 6 M B 1 3 4 ,0 0 0
3 8 6 D X 1 9 8 5 1 6 -3 3 3 2 4 G B 2 7 5 ,0 0 0
4 8 6 D X 1 9 8 9 2 5 -5 0 3 2 4 G B 1 ,2 0 0 ,0 0 0

P e n t iu m 1 9 9 3 6 0 -2 3 3 3 2 4 G B 3 ,1 0 0 ,0 0 0
P e n t iu m P r o 1 9 9 5 1 5 0 -2 0 0 6 4 4 G B 5 ,5 0 0 ,0 0 0

P e n t iu m I I 1 9 9 7 2 3 3 -3 3 3 6 4 4 G B 7 ,5 0 0 ,0 0 0

17

l Prefetch

l Instruction Decode, part 1 (op code interpretation)

l Instruction Decode, part 2 (operand fetch)

l Execute

l Write back, (Registers and memory are updated)

Since an instruction will spend at least one clock cycle in each stage of execution, a 486
instruction requires a minimum of five clock cycles to execute. Pipelining is where the
Level one processor cache memory comes into play. The microprocessor can access a
line of data in cache in one clock cycle, while there is a significant performance penalty if
data or instructions actually have to be fetched from main memory. The fact that the Intel
uses CISC is also a significant performance factor because many 486 instructions require
more than one clock cycle in the Execute stage. (The significance of pure RISC designs is
that only simple instructions that can execute in a single clock are implemented.)

There are separate pieces of hardware circuitry in the processor that are responsible for
carrying out the processing associated with each stage in the execution of a machine
instruction. For instance, after an instruction reaches the D1 stage, the circuitry associated
with fetching the next instruction is idle. The idea behind a pipeline is to utilize this
hardware by attempting to execute instructions in parallel. As illustrated in Figure 15, the
486 pipeline has the capacity to execute five instructions in parallel. As soon as
Insttruction 1, for example, completes its Prefetch stage, the prefetch hardware can be
applied to the next instruction in sequence. When the 486 pipeline is working optimally,
even though each individual instruction takes five clock cycles to executes, on average an
instruction completes every clock cycle! The behavior of a pipelined processor
architecture leads quite naturally to measuring its performance according to the number
of Clocks per Instruction (CPI). Pipelining boosts the actual instruction rate of a
microprocessor from 5 CPI for the non-pipelined version to 1 CPI for the ideal processor.

In practice, CPIs in the range of one clock per instruction are not achievable even in the
very best textbook examples of RISC processor design. Some of the problems are
endemic to the technology. Various instruction sequences result in pipeline stalls that

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

18

slow down instruction execution rates. Branch instruction which change the sequence of
instruction execution are problematic because the wrong instructions get loaded and
decoded when the branch that changes the sequence is executed. Processors like the
Pentium and Pentium Pro use branch prediction strategies to keep track of when
branches were taken in the past and load the pipeline with instructions out of sequence
based on history. Often it is necessary to stall the pipeline because the output from one
instruction is required by the next instruction. When one instruction updates a register
and the instruction that follows uses that register to address data, it is necessary to stall
the pipeline in the address generation stage for the second instruction. This type of a
pipeline stall where there is a dependent relationship between instructions that execute
near each other is known as an interlock.

Intel’s experience with speeding up the 486’s instruction execution rate using pipelining
was disappointing for a different reason – the x86 complex instruction set. Complex x86
instructions require more than one clock cycle in the execution stage. Reviewing the
specifications in Intel’s documentation [7], we can see that the basic commands in the
integer instruction set require between 1 and 9 clock cycles. The VIT prefix used in the
commonly used bulk memory Move instructions alone requires 4 clocks, for example. A
32-bit far call, used for branching to and from a subroutine, can require as many as 22
clock cycles. This variability in instruction execution time plays havoc with the 486’s 5
stage pipeline, causing frequent stalls in the EX stage, as depicted in Figure 16. The
drawing illustrates a 486 pipeline stall because Instruction 1’s EX cycle requires five
clocks to complete. You can see how a stall in one instruction backs up the entire
pipeline. Because some its complex instructions require many clock cycles to execute, the
486 sustained instruction execution rates that fell well short of optimal performance.

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

D1PF D2 EX WB

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

… Stall ...

… Stall ...

… Stall ...

… Stall ...

As the next generation semiconductor fabrication technology became available, Intel’s
chip designers faced a quandary. Some pipelining performance issues can be addressed
with more hardware, so the P5 or Pentium chip gained separate code and data caches, as
well as branch prediction logic. (The Pentium’s use of branch prediction was subject to a
well-publicized patent infringement suit brought by Digital. The litigation was settled out
of court in 1998.) But the performance issues related to the x86 complex instruction set
resisted a simple hardware solution.

The Pentium introduces a superscalar dual pipeline architecture that allows, under the
right circumstances, two instructions to be completed in a single clock cycle. The
Pentium dual pipeline is illustrated in Figure 17. The Pentium contains a single PreFetch

19

engine capable of operating on several instructions in parallel. The Pentium can then load
the two instruction execution pipelines in parallel. Where a pipeline computer is
theoretically capable of executing instructions at a rate of 1 CPI, a superscalar machine
such as the Pentium is capable of an instruction execution rate that is less than 1 CPI. The
top pipeline in the Pentium superscalar pipeline is known as the u pipe, and its execution
characteristics are identical to the 486. The bottom pipeline is called the v pipe and it is
only loaded under special circumstances. The Pentium Prefetch stage follows arcane
instruction pairing rules that determine whether the second instruction in an instruction
pair is loaded in the v pipe and executed in parallel.

D1

PF

D2 EX WB

D1 D2 EX WB

The rules for loading the v pipe are fairly complex. Two simple single cycle execution
instructions can almost always be paired and executed in parallel. To some observers [see
8, for example], this characterizes the Pentium instruction pairing rules as identifying a
subset of RISC instruction inside the full, complex instruction set and allowing them to
execute in parallel. However, any instructions which use immediate operands or
addresses (the data the instruction operates on is embedded in the instruction) can never
be paired. The pairing rules are more complicated than that, however. For example, if the
second instruction operates on any of the same registers as the first instruction, it cannot
be executed in parallel. This is a particularly strict requirement in the x86 environment
where there is a legacy of only eight General Purpose Registers, which leads to a few
registers being used over and over.

Superscalar architectures were introduced into the world of scientific computing in the
late 1980s by workstation hardware manufacturers who also developed their own systems
software, including the compilers that generated code optimized to run on these
machines.[7] RISC hardware manufacturers rely on compilers to generate code that will
run optimally in a parallel environment to take full advantage of the superscalar
architecture. An optimizing compiler may resort to inserting placeholder instructions into
the instruction sequence or rearranging instructions to avoid sequences where there are
direct dependencies between successive instructions.

In the open PC environment, Intel’s holds an enviable position as the developer of the
hardware used in most PC desktop, workstation, and Server machines. However, Intel
develops very little of the systems software that run on its hardware, including the the
most popular operating systems and high level language compilers. Intel’s challenge
when it introduced the Pentium supercalar architecture was to promote the use of this
hardware among third party systems software developers, including the developers of
compilers and operating systems.

20

Intel’s approach to promoting the Pentium was to provide two types of tools for use by
third party developers. The first was to build into the processor a measurement interface
that third party software could tap. The measurement interface for the Pentium provides
extensive instrumentation on internal processor performance. (The complete list of
available Pentium Counters is documented in Appendix A. Pentium performance
Counters can be accessed under Windows NT by installing the P5 Counters, using
software Microsoft distributes as part of the Windows NT 4.0 Workstation Resource Kit
[9].) It includes the ability to measure the actual instruction execution rate, the number of
paired instructions that executed in the v pipe, and various metrics that deal with pipeline
stalls. The hardware measurement interface allows two of the metrics listed in Appendix
A to be collected at any one time.

The second tool is VTune, which performs two key functions that developers can use to
optimize the code they develop. The first is it provides a very usable interface to the
built-in Pentium measurement interface. Using this interface, VTune can be used to
collect Pentium statistics on a program as it executes. The second key aspect of VTune is
the capability to analyze code sequences and make recommendations on how to write
code that is optimal for the Pentium. Among other things, VTune computes the CPI for
an instruction sequence and calculates the utilization of the v pipe. See Figure 17.

With this background, we can know return to VTune’s analysis of the
2I\X-RWXERGI(IJ subroutine that was identified as a hotspot within the HQTIVJWW
program, as depicted back in Figure 12.

The Microsoft Visual C++ compiler generated the six lines of machine code for the
subroutine from the following C language statements:

4)6*C-278%2')C()*-2-8-32�
�2I\X-RWXERGI(IJ

��4)6*C-278%2')C()*-2-8-32�
T-RWXERGI��

_

����4)6*C'3928)6C&03'/��
T'XV&PO�

����T'XV&PO�!��4)6*C'3928)6C&03'/�
�

 ��4&=8)�T-RWXERGI���T-RWXERGI�"&]XI0IRKXL��

����VIXYVR �4)6*C-278%2')C()*-2-8-32�
�

�� ��4&=8)�T-RWXERGI���T-RWXERGI�"&]XI0IRKXL���T'XV&PO�
"&]XI0IRKXL��

a

21

What this C language helper function does is advance a pointer inside the buffer of data
returned by 6IK5YIV])\ from the beginning of one Object instance to the next
occurrence of an instance. When HQTIVJWW is retrieving instanced data, particularly
associated with NT processes and threads, this code is called repeatedly to parse the
performance data buffer. As we have seen, all three performance profiler products
identified this segment of code as an execution hotspot in the program. In the VTune
analysis of HQTIVJWW, the 2I\X-RWXERGI(IJ code segment was executed even
more frequently because both process and thread data was being collected. The profiling
data strongly suggests that the efficiency of the program can be optimized by improving
the performance of this specific segment of code.

The code generated by the Microsoft compiler which carries out these C langauge
statements is a sequence of admirably compact machine language instructions:

The code analysis VTune performs on the machine language instructions in
2I\X-RWXERGI(IJ (illustrated in Figure 12) indicates that none of these frequently
executed instructions is capable of being executed in parallel on the Pentium. The total
lack of parallelism comes despite the fact that these are all simple one and two cycle
instructions. The screen legend in the right hand corner of the VTune display is used to
decode the visual clues the program provides to instruction execution performance.
Instructions which can be successfully paired and executed in parallel are clearly
indicated, as are the boundaries of code cache lines. The P5 optimization switch on the
VC++ compiler generates NO OP instructions to line up code on cache line boundaries,
as shown here.

Not only is this code unable to take advantage of the Pentium’s parallelism, VTune
informs us that the machine code instructions generated by the compiler stall the u pipe.
The column marked “Penalties and Warnings” indicates that the second and fourth MOV
(move) instructions cause an address generation interlock (AGI) that stalls the u pipe.
Notice that each instruction in this routine is executed once and only once each time
through the routine. There are no branches. However, the instruction timing VTune
reports, based on its sampling of the program as it was running, show a wide variation in
the execution time of the individual instructions in this code sequence.

The instruction execution timings VTune reports clearly show the performance impact of
stalling the pipeline. The second MOV instruction, requiring two clock cycles to execute,

�����(�����QSZ��������IE\�H[SVH�TXV�?IWT��A

�����(�����QSZ��������IG\�H[SVH�TXV�?IE\A

�����(�����EHH��������IG\�IE\

�����(�����QSZ��������IE\�H[SVH�TXV�?IG\A

�����(�&���EHH��������IE\�IG\

�����(�(���VIX

22

is found in execution 2.48% of the time. This instruction copies the value at the address
pointed to by the EAX register into the ECX work register. The previous instruction sets
up the EAX address using a parameter passed on the stack pointer (ESP). There is an
obvious dependency between these two instructions. The next instruction adds a value to
ECX. The code is doing arithmetic on another address pointer and uses this value in the
MOV instruction that follows. Because the first MOV stalls the pipeline, the ADD
instruction that follows is found to be in execution 11.6% of the time. Continuing the
analysis, we see how pipeline stalls propagate through the an instruction sequence. The
next MOV instruction (another 2 cycle instruction) is in execution 3.86% of the time,
while the single one clock ADD that follows it was found to be in execution 14.86% of
the time!

Faced with this situation, a programmer working in Assembly language can rework the
machine instructions easily enough to avoid the address generation interlock problem by
adding a third work register. The more complicated code sequence actually runs several
times faster than the original. VTune provides detailed advice to the Assembly language
programmer concerning Pentium-specific instruction execution performance issues, as
illustrated in Figure 20. The ADD instruction analyzed below has an obvious problem
due to the interlock with the previous instruction. But it also occasionally requires the
data referenced by the EAX register to be refreshed from memory, rather than using the
copy that was found in the data cache.

To take advantage of all the detailed performance information on instruction execution
that VTune provides, an application programmer working in a C language development
faces three choices. The first and easiest option is to inform the compiler to generate code

23

optimized for the Pentium processor. Using the P5 optimizing switch, we noted some
changes in the sequence of instructions generated for this routine, but nothing that was an
extensive enough restructuring of the program logic to show any appreciable
improvement. Figure 21 summarizes a run we made after instructing the compiler to
generate code optimized for the Pentium. The CPI shows a slight reduction compared to
Figure 17, although, curiously, the percentage of paired instruction execution actually
dropped. Of course, CPI is the more important indicator of performance.

The second option is to replace the code generated by the compiler with an inline
Assembly language routine. We did experiment with that option in this instance and were
very satisfied with the performance improvements that resulted. This was in spite of the
fact that adding another work register make the code longer and somewhat more
complicated. This counterintuitive outcome is not unusual for RISC machine. They can
often execute longer code sequences faster than shorter, more compact ones. The third
option is to recode the original C language routine, which is the route we believe is
indicated in this instance to address the number of times this helper function is being
called. We plan to tackle that code restructuring in the next development cycle, and we
will continue to rely on Rational Visual Quantify and Intel VTune to measure the impact
of those improvements.

Intel Pentium Pro. A final topic that should be addressed before we leave a discussion of
the capabilities of VTune behind is the role of VTune with Intel’s current generation of
Pentium Pro and Pentium II hardware. The P6 or Pentium Pro internal structure is much
more complicated than the previous generation P5. The simple parallel u and v pipes are
replaced by a complex microarchitecture that addresses x86 instruction execution issues
from an entirely different direction. As the discussion above indicated, instruction pairing
in the Pentium was limited to a relatively small subset of the available instruction set. To
get the most mileage out of the Pentium hardware, compilers had to be revised, and C
language programs that ran on the 486 had to be recompiled for the P5. Of course, being
forced to maintain two separate and distinct sets of load modules, one optimized for the
486 and the other optimized to run on the Pentium, is problematic, to say the least. But
without recompiling older programs to make more use of the simple RISC-like
instructions that can be executed in parallel on the Pentium, Intel customers will not reap
the full benefits of the new and potentially much faster hardware. A second issue in
generating optimal code for the Pentium was the problem illustrated here. Having very
few General Purpose registers to work with means it is difficult to write x86 code that
does not stall the pipeline and can take full advantage of the superscalar functions.

24

The microarchitecture devised for the P6 attempts to address these specific performance
issues. The P6 has even more parallel processing capabilities than the P5. [See 10 for a
detailed discussion of P6 internals.] First, the P6 automatically translates x86 instructions
into a RISC-like set of fixed length micro-operations or micro-ops. Most micro-ops are
designed to execute in a single clock cycle. To augment the limited number of GPRs
available to the machine language programmer, these micro-ops can draw on 40 internal
work registers. After unwinding CISC machine instructions into RISC-like instructions,
micro-ops are stored in a pool where they can be executed in any order by the dispatch
unit of the processor. When all the micro-ops associated with a given machine language
instruction complete execution, the instruction itself is said to be retired. Retiring
instructions also means that as any results are written back to the computer’s registers and
memory. The processor’s retirement unit can retire up to three micro-ops per clock cycle,
with the restriction that these must be in strict order according to the original instruction
execution stream.

By design, the P6 microarchitecture is designed to create automatically the sort of
optimized code sequences that the programmer needed to craft by hand using VTune. As
a matter of fact, VTune cannot perform the same kind of analysis illustrated here on code
instruction sequences for the much more complicated P6. How effective the complex P6
architecture actually is in optimizing code sequences remains an open question. The
profile data collected by VTune on the performance of the HQTIVJWW application that
was reported in Figure 12 was collected on a Pentium Pro running at 200 MHz. From
these results, it is evident that the P6 did not parallelize this instruction sequences very
successfully. The P6 microarchitecture apparently could not eliminate the pipeline stalls
caused by address generation interlock in this code sequence. This is a clear indication
that VTune continues to play a valuable role in optimizing the performance of Wintel
applications.

25

References.

[1] Chris Loosely and Frank Douglas, High-Performance Client Server. New York: John
Wiley and Sons, 1998.

[2] Connie U. Smith, Performance Engineering of Software Systems. Reading, MA:
Addison-Wesley, 1990.

[3] Jeff Buzen and Annie Shum, “Considerations for modeling Windows NT,” CMG 97
Proceedings, Dec. 1997, p. 219-229.

[4] Steven E. Sipe, “C++ Code Profilers,” PC Magazine, October 21, 1997

[5] Ron van der Wal, “Source-code profilers for Win32,” Dr. Dobbs Journal, March
1998.

[6] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach. San Francisco, CA: Morgan Kauffman, 1996. 2nd Edition.

[7] Addendum - Intel Architecture Software Developer’s Manual: Volume 2: Instruction
Set Reference. http://developer.intel.com/design/mmx/manuals/

[8] Hans-Peter Messmer, The Indispensable Pentium Book. Reading, MA: Addison-
Wesley, 1995.

[9] Microsoft Windows NT Workstation Resource Kit. Redmond, Washington: Microsoft
Press, 1996.

[10] Tom Shanley, Pentium Pro Processor System Architecture. Reading, MA: Addison-
Wesley, 1997.

26

Appendix A. Pentium (P5) performance Counters

% Branch Target Buffer Hits

% Branches

% Code Cache Misses

% Code TLB Misses

% Data Cache Misses

% Data Cache Read Misses

% Data Cache Write Misses

% Data Snoop Hits

% Data TLB Misses

% V-Pipe Instructions

Bank Conflicts/sec

Branches/sec

BTB Hits/sec

Bus Utilization (clks)/sec

Code Cache Miss/sec

Code Read/sec

Code TLB Miss/sec

Data Cache Line WB/sec

Data Cache Snoop Hits/sec

Data Cache Snoops/sec

Data R/W Miss/sec

Data Read Miss/sec

Data Read/sec

Data Reads & Writes/sec

Data TLB Miss/sec

Data Write Miss/sec

Data Write/sec

Debug Register 0

Debug Register 1

Debug Register 2

Debug Register 3

FLOPs/sec

I/O R/W Cycle/sec

Instructions Executed In vPipe/sec

Instructions Executed/sec

Interrupts/sec

Locked Bus Cycle/sec

Memory Accesses In Pipes/sec

Misaligned Data Refs/sec

27

Non_Cached Memory Ref/sec

Pipe Stalled On Addr Gen (clks)/sec

Pipe Stalled On Read (clks)/sec

Pipe Stalled On Writes (clks)/sec

Pipeline Flushes/sec

Segment Loads/sec

Stalled While EWBE#/sec

Taken Branches or BTB Hits/sec

Write Hit To M/E Line/sec

