VIA and InfiniBand: Interconnects for High-Performance Computing

Odysseas Pentakalos, Ph.D.

odysseas@sysnetint.com

Introduction

- Moore's Law states that processing power doubles every eighteen months
- Network transfer rates have been increasing by orders of magnitude
- Most applications have some parallel component
- Clusters of COTS computers are increasingly the more appropriate solution
- Current shared bus technologies cannot keep up with increasing demands on data transfer rates

Outline

- Motivation
- Architectures for parallel computing
 - Shared memory
 - Distributed memory
 - Message passing
- Virtual Interface Architecture
 - Architectural stack
 - Operations
 - Applications
- InfiniBand
 - Architecture
 - Operations
- Future

Motivation

- CPU Processing Power increases have not kept up with Network Transfer rate increases
- TCP/IP may be too high-end a solution for the problem at hand

From "The Virtual Interface Architecture" by Don Cameron and Greg Regnier

Motivation

 As disparity between CPU processing time and network transfer time increases so will the overhead

Figure 1: Maximum Allowable Overhead to Achieve a Throughput of One-Half the Link Rate For a Range of Average Message Sizes

From "An Implementation and Analysis of the Virtual Interface Architecture" by *Philip Buonadonna*, *Andrew Geweke*, and *David Culler*, Computer Science Department, UC Berkeley.

Potential High Performance Architectures

Shared Memory Architecture

 Symmetric Multiprocessing (SMP) share OS, memory and I/O bus

Distributed Shared Memory

 Provides the single shared memory abstraction on a physically distributed architecture

 Same physical architecture but the shared memory abstraction is no longer there

Virtual Interface Architecture

Virtual Interface Architecture

From "An Implementation and Analysis of the Virtual Interface Architecture" by *Philip Buonadonna*, *Andrew Geweke*, and *David Culler*, Computer Science Department, UC Berkeley.

12/3/2002

VIA Operations

- Send/Receive: transfers sequence of bytes using scatter/gather capabilities between applications
- RDMA-Write: copies data to a remote buffer using zero-copy semantics. Supports gather but not scatter semantics
- RDMA-Read: reads data from a remote buffer using zero-copy semantics. Supports scatter but not gather semantics.

Other VIA Concepts

- Descriptors are used for specifying the operation to be performed
- Work Queues are used for queuing operations
- Doorbells are used for notifying the VI NIC that work is available
- Work Queue Completion
- Memory registration operations

VIA Applications

- IBM DB2 Universal Database Enterprise Edition
- Microsoft SQL Server Enterprise Edition on Windows 2000 Datacenter Server
- Microsoft Winsock Direct
- DAFS Filesystem
- FC-VI VI Architecture over Fibre Channel (supported by Emulex and Qlogic)

InfiniBand Architecture

InfiniBand Architecture

 Introduces a high-speed fabric in place of a PCIbus

 Borrows heavily from VIA to provide a lowlatency interconnect

InfiniBand Operations

- Send/Receive
- RDMA-Write
- RDMA-Read
- RDMA-Atomics: Provides two additional operations for synchronization: Compare & Swap and Fetch-Add.

InfiniBand Applications

- SRP SCSI RDMA protocol
- DAFS Direct Access File System
- SDP Socket Direct Protocol
- IPoIB IP over InfiniBand

Conclusion

Highly Recommended References:

- "The Virtual Interface Architecture" by Don Cameron and Greg Regnier; excellent reference on everything about VIA
- "InfiniBand Architecture: Development and Deployment" by William T. Futral; excellent reference on the InfiniBand