SQL Server Performance
Assessment and
Optimization Technigues

UNISYS

Imagine it - Done

> Interpretation and usage of informative
performance counters

> Expand upon PerfMon explanations
> ALL graphs of actual customer data

> Insights acquired from analysis of many
customer data sets

> Possible courses of action
> SQL Profiler usage considerations

. UNISYS

Imagine it « Done

> SQL Server

* Measures many activities, but only certain ones can be traced to a
specific database

* None can be traced back to a specific query

e Sometimes need additional tools such as SQL Profiler (SQL Server
trace) to complete analyses

> Must monitor other performance objects

> Presentation refers to SQL Server objects unless otherwise
noted

3 UNISYS

Imagine it « Done

Qverview

> Many PerfMon explanations useless

> Example explanations

e SQL Compilations/sec is “Number of SQL compilations™

e Table Lock Escalations/sec is “The number of times locks on
a table were escalated”

e Bulk Copy Rows/sec is “Number of rows bulk copied per
second”

s UNISYS

Imagine it « Done

PerfMon Counter Hierarchy

> Three-level hierarchy

> Objects at top level

> Counters
e Comprise bottom level

e Always pertain to a particular object

> Instance level added between object and counter
levels when necessary

5 UNISYS

Imagine it « Done

Object Hierarchy Examples

> Processor object - Processor 0 instance 2 %
Processor Time counter

> Memory object - Page writes/sec counter

6 UNISYS

Imagine it « Done

SQL Server Objects

> One set per SQL Server instance

> Each set divided into 17 categories
> 4 memory-related
> 2 lock-related

7 UNISYS

Imagine it « Done

SQL Server Objects

> 7 measure database backup, replication, and user
settable categories

e Applicable to database backup and replication performance,
as well as specifically defined and maintained user counters

> Rest involve database transactions, log handling,
and database access activities

8 UNISYS

Imagine it « Done

SQL Server Object List

SQL Server Objects Category
SQL Server: Access Methods Database access
SQL Server: Backup Device Database backup
SQL Server: Buffer Manager Memory management
SQL Server: Buffer Partition Memory management
SQL Server: Cache Manager Memory management
SQL Server: Databases Transactions & log handling
SQL Server: General Statistics User connections
SQL Server: Latches Locking
SQL Server: Locks Locking
SQL Server: Memory Manager Memory management
0 UNISYS

Imagine it « Done

SQL Server Object List

SQL Server Objects Category
SQL Server: Replication Agents Database replication
SQL Server: Replication Dist. Database replication

SQL Server: Replication Logreader Database replication

SQL Server: Replication Merge Database replication
SQL Server: Replication Snapshot Database replication
SQL Server: SQL Statistics SQL command activities
SQL Server: User Settable User defined
10 UNISYS

Imagine it « Done

Buffer Manager and Buffer Partition
Objects

> 21 counters

> 5involve Address Windowing Extensions (AWE)
> AWE covered indirectly

11 UNiSYS

Imagine it « Done

Buffer Cache

It Ratio

> Frequency with which database read requests are
satisfied from database cache memory instead of

disk

> Higher values result in lower disk usage

> Recommended value at least 90%

> Raw performance data can sometimes exceed

100%

12

UNISYS

Imagine it « Done

. i

> Compare Memory Manager object’s Target Server
Memory (KB) with Total Server Memory (KB)
counters

> If Total less than Target, possibly insufficient
memory

> If comparison too small or Buffer Cache Hit Ratio
Is too low, allocate more memory to SQL Server,
If possible

13 UNISYS

Imagine it « Done

SQl Server Only App and Single Instance
> If SQL Server only application on system and

there is only one instance, decisions may be
simpler

e Reconfigure to use all of memory automatically, if not
already doing so and not using AWE

e Add more memory

14 UNiSYS

Imagine it « Done

AWE and SQL Server Using All Memory
Automatically

> Setting SQL Server to use all memory has often
caused problems when AWE used on Windows
2000

> Can cause system to

e Exhaust Windows memory

e Page heavily
> AWE-related tables hard to identify

15 UNISYS

Imagine it « Done

AWE and SQL Server Using All Memory
Automatically

> Scalability experts have stated that AWE-related
tables consume more Windows memory as more
AWE memory locations accessed (at least on
Windows 2000)

> Experience has shown this to be true

16 UNISYS

Imagine it « Done

> 30 GB allocated to SQL Server on 32 GB system

e System paged heavily after user activity increased

e Little or no available memory for Windows

e Could not attribute Windows memory usage to a process
> Reduced allocation to 28 GB

e Paging ceased

e Both system and SQL Server ran fine

e Buffer cache hit ratio hardly affected

17 UNiSYS

Imagine it « Done

> All but 65 MB allocated to SQL Server on 8 GB system

e System ran fine for several weeks, but available memory decreased very
slowly

> Full text index creation executed

e System cache increased

e |ndex creation programs required non-SQL memory
> System began to page heavily

e Little or no available memory for Windows

e System basically stopped functioning when available memory dropped
below 4 MB

> SOQL memory allocation reduced to insure 678 MB available —
problems ceased permanently

18 UNISYS

Imagine it « Done

100,000,000

90,000,000
80,000,000
70,000,000

60,000,000

50,000,000
40,000,000

30,000,000

20,000,000

10,000,000

0

TO00s TIZ206 724102 TIE00 74818 #0015 1245 32441 33637 4353 00456 944356 100356 1001548 102815 104006 105157 110347 111614
Abd Abd Abd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd

— Available Memory —— Cache Memory — Windows Memory Threshold

19 UNISYS

Imagine it - Done

SQL One of Many Apps

> Decisions much more complex if SQL Server NOT only
major application on computer or multiple instances exist

> Classic system versus database conflict

e Allocating too much memory to SQL Server can harm other
applications, SQL Server instances, or Windows, unless sufficient
memory can be added

> Need to match instance memory with business
requirements

20 UNISYS

Imagine it « Done

> Make very gradual changes
> Monitor system Memory object counters before
and after any changes

e Page writes/sec

e Available Bytes

Insure Windows 4 MB available memory limit impossible to
reach, regardless of application activities

21 UNISYS

Imagine it « Done

Free Pages Counter

> Number of memory buffers available to receive
database pages read from disk

> Indicator of insufficient SQL Server memory

> Values consistently close to zero indicate SQL
Server memory shortage

> Closely associated with Free list stalls/sec

22 UNiSYS

Imagine it « Done

Freel ist Stalls Counter

> Frequency with which requests for available
database pages are suspended because no
buffers are available

> Free list stall rates of 3 or 4 per second indicate
too little SQL memory available

23 UNISYS

Imagine it « Done

Freel ist Stalls Graph

Stalls/second

0.3

e

R T |

e Jreererrss e

Tue 11:45 100 215 330 4456 600 715 30 %45 1100 Wed 130 2:45 400 515 630 F45 200 1005 1130 1245 200 315 430 B45 TO0 &15 930 1048
May AM FM PM PM PM PM PM PM PM FM May AM O AM AM O AM AM AM AM AM AM PM PM FM PM PM PM PM FM PM

21 22
10:30 1215
A AM

24 UNISYS

Imagine it « Done

Stolen Pages Counter

> Pages “stolen” when Windows requires memory
for another application

> Useful indicator of overall system memory
shortage

> Short periods may be normal

> Example: system backup begins after large
database batch run completes

25 UNiSYS

Imagine it « Done

Database 1/0O Counters

> Page Reads/sec and Page Writes/sec counters

> Measures physical 1/0s, not logical I/Os

> May indicate
e Insufficient database memory
e Applications improperly accessing database

e Improper database table implementation

26 UNISYS

Imagine it « Done

/0 Activity Graph

I/10s per second

3,500

3,000

2,500

2,000

1,500

1,000

500

0 iamoncce k. s -
Mon 130 300 430 600 T 900 1030 1200 Tue 445 615 T4E S5 1045 Wed 145 315 445 615 T4E K15 1045 1215 145 E15 445 615 TdE 915 1045
Aug AM AM AM AM AM AM AM PM Aug PM O PM PM O PM OPM O Aug AM AM AM AM AM AM AM PM PM PM PM PM PM PM PM
14 zr 2%

12:00 318 1218

A P Al

B Reads O Writes

27 UNISYS

Imagine it « Done

Page Lookups/sec Counter

> Measures number of times database attempted to
find a page in buffer pool

> Logical read

> Useful for corroborating and further quantifying
buffer cache hit ratio

> Compare Page Reads/sec with Page lookups/sec

28 UNISYS

Imagine it « Done

Buffer Cache Hit Ratio - Revisited
> Can perform computation when more precision
necessary, e.g., 30 of 32 GB allocated to SQL

> 1 — (Page reads/sec / Page lookups/sec)

29 UNISYS

Imagine it « Done

Page Lookups Graph

Lookups per second

300,000

250,000

200,000

150,000

100,000

50,000

(==
|

Man T30 300 430 B00 F30 900 1030 12:00 Tue 445 615 F45 915 1045 Wed 145 316 446 615 T45 9156 1045 12115 1456 316 445 6116 T4E 915 1048
Aug o AM AM AM AM AM AM AM PM Aug PMOPM PM PM PM Aug AMOAM AM AM AM AM AM PM PM PM PM PM PM PM PM

18 = %
12:00 316 1215
Ah P Al

30 UNiSYS

Imagine it « Done

Memory Manager Object

> Counters can be used to develop SQL Server
memory composition graph

e Connection Memory (KB)

e Granted Workspace Memory (KB)
e Lock Memory (KB)

e Optimizer Memory (KB)

e SQL Cache Memory (KB)

> Monitor lock blocks

31 UNiSYS

Imagine it « Done

Access Methods Object

> Most helpful counters

e Forwarded Records/sec
e Full Scans/sec

e Index Searches/sec

e Range Scans/sec

e Table Lock Escalations/sec

32 UNISYS

Imagine it « Done

Forwarded Records

> Only occur in tables without clustered indices, i.e., heaps

> Occur when row/record moved from one database page to
another because changed record cannot fit back in original

page
e Image data, i.e., bitmap data
e Variable-length string data

> Most frequently occur in Tempdb

33 UNiSYS

Imagine it « Done

Forwarded Records

> Creates de facto physical linear search, which
can cause long record access times and high
page read rates

> Adding clustered index is simplest way to
eliminate problem

e Use as few data columns as possible

> Otherwise, create records that are large enough
to accommodate changes

34 UNiSYS

Imagine it « Done

> Two ways to determine total count of forwarded records in a table

> Enable trace flag 2509 and execute DBCC CHECKTABLE
command as shown below

« DBCC TRACEON (2509)

¢ GO

¢ DBCC CHECKTABLE (<table name>)
OR

> Execute DBCC SHOWCONTIG using TABLERESULTS option as
shown below

* DBCC SHOWCONTIG (<table name>) WITH TABLERESULTS

35 UNISYS

Imagine it « Done

Forwarded Records/sec

> Measures # of records fetched via forwarded
record pointers

> Since forward record “chains” are prevented by
SQL Server, counter refers to actual record count,
not number of pointer “chases”

36 UNiSYS

Imagine it « Done

Forwarded Records Graph

Activities per second

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

Thu 130 300 4:30 600 730 900 10:30 1200 1300 00 4300 600 T30 900 1030 Fio 1300 200 4:300 600 70 w00 1030 1200 1300 300
May AWM AM O AM AM AM AM AM PM PM PM FM PM FM PM PM May AN AWM AM AM AM AM AM FM PM PM
o 24
1200 1200
A Al

37 UNiSYS

Imagine it « Done

Full Scans

> Unrestricted linear searches through table or index
> Example SQL statement
e SELECT * FROM TABLETHATISAHEAP

> SQL Query Estimated Execution Plan can identify them
ahead of time

> SQL Query Actual Execution Plan and SQL Profiler (trace)
can identify them when they occur

> Trace records contain logical reads and writes

38 UNiSYS

Imagine it « Done

Access Method Graph

160 Activities per second

140

120

100

80

60

40

20

Mon Apr 19 10100 AM 10:30 AM 11:00 AM 1130 AM 1200 PM 1230 FM 100 PM 1330 PM 200 PM 2330 PM 300 PM 330 PM 400 PM 4:30 PM
230 AN

B Forwarded Recs O Full Scans

39 UNiSYS

Imagine it « Done

/0 / . ; Met| s
> Direct graphical comparison of these entities is very helpful

> Shows whether physical and logical linear searches, i.e.,
forwarded records and full scans, result in physical I/Os or
are completely satisfied from memory

> Many linear searches can be against very short tables that
are always in memory

> Comparison distinguishes relatively harmless ones from
those that impact the I/O subsystem

40 UNISYS

Imagine it « Done

SQL Server I/O, Forwarded Record, & Full
Scan Graph

1/Os per second Forwarded Records or Full Scans per second
6,000 P P 600
1 - 540
£ L (1 e L 480
B e] e
i - 360
3,000 300
240
2,000
180
120
1,000
60
0 -
Tue 655 F20 745 &0 35 300 925 350 1015 1040 1105 1130 1155 Wed 1245 110 135 200 225 250 316 a0 405 430 455 520 SdE 80 635
Jan PM PM PW PM PFPM PM PM PM FM PM PFM PM PM Jan AM AM AM AM AM AM AM AM AM AWM AM AM AM AWM AM
o ey
P A
Il \\rites 1 Reads - Forwarded Recs = Full Scans
®
41 UNISYS

Imagine it « Done

Locks Object
> One of the most important objects

> Number of Deadlocks/sec critical

> SQL Profiler can provide information about how
deadlock was created

> Lock Timeouts/sec also critical

e # of lock requests that exceed maximum specified wait time

e Monitors each type of lock

42 UNISYS

Imagine it « Done

Lock Types/Instances

ltem Description
Database Entire database
Extent Contiguous group of 8 data pages or index pages
Key Row lock within index
Page 8-kilobyte (KB) data page or index page
RID Row ID. Used to lock single row within table
Table Entire table, including all data & indices
43 UNISYS

Imagine it « Done

Lock Timeouts Graph

100 __Timeoutsfsecond

90
T e ¥
T .. s ddt B
U T R
I s e
L e
L . e T
L T e
L e I |

Thu 16 230 245 &00 €15 TI0 £45 1000 1115 1230 146 00 405 530 €46 200 915 1030 1145 Fri 205 330 445 600 FIE 30 45 1100
May AM AWM AWM AM O AM AM AM AM AM PM PM PM PM PM PM PM PM PM PM May AWM AWM AM AWM AM AR AR AM

23 24
1200 100
Abd Al

B RID OExtent BDB E Table O Page B Key

" UNISYS

Imagine it - Done

Other L ock Counters

> Average Wait Time (ms)
e Measures average time each lock request was forced to wait

> Useful to sum these to prevent averages from disguising
problems

e Calculate percentage of interval spent waiting
> Lock Waits/sec

e Records how often lock requests waited
> Trace duration filter does not apply to lock timeouts

45 UNISYS

Imagine it « Done

Total L ock Walit Times

300 Seconds

T
SR N R
S N | N
S N |

Thu 1:300 300 430 800 T30 900 1030 1200 130 300 430 800 F30 900 1030 FridMay 1300 300 430 800 FE00 5000 1020 1200
Mlay 2E A Ahd A Ahd Ahd A Ahd Fhd Fhd Fhd Pl Fhd Pl Phd Phd 24 A Ahd A Ahd Ahd Ahd Ahd Pl
12100 1200
Abd Ahl

B RID O Extent BDB HE Table [0 Page B Key

46 UNISYS

Imagine it « Done

Lock Escalations

> Row, key, or page locks automatically escalated to coarser
table locks as appropriate

e Single table lock acquired
e Many lower level locks released

> Recorded in Table Lock Escalations/sec

> Lock Owner Blocks Allocated and Lock Blocks Allocated
can be used to validate that applications hold too many
locks for too long

. UNISYS

Imagine it « Done

Table L ock Escalations

70 Escalations/second

60

50

40

30

20

10

LI e e e e e e e O e e e e e
Thu 115 230 345 500 €15 TE0 45 1000 1115 1230 145 00 415 B30 &ds 00 215 1030 1M14E P 215 330 445 600 TS #3000 sdE 1100
May AM AM AM AM AM O AM AM AM AM PM PM PM PM O FM O PM PM PM FM O PM May AM O AM O AM O AM AWM AM AM AM

23 24
12:00 1:00
Ahd Abd

48 UNISYS

Imagine it « Done

Lock Block & L.ock Block Owners Graph

10,000,000 Lock-Related Blocks in Use

R S S

ool T —
21000,000 el
OO N ¥ U W
5,000, 000 - Py
4,000,000 --r--rororeereer e |

3,000,000 oo eoferefeeeeee e
2,000,000 |-

_

Tue 1145 100 215 330 445 600 715 230 245 1100 Wed 130 245 400 515 €30 745 900 1015 1120 12:45 200 215 430 545 700 215 930 10045
May AM PM PM PFM PFM PM PM PFM PFM PM May AM AM AM AM AM AM AM AM AM PM PM PM PFM PFM PM PM PM PM

21 -
10:30 1215
AM ey

B Lock Blocks [Lock Block Owners

. UNISYS

Imagine it « Done

Latches
> Latches

e Lightweight, short-term synchronization objects

e Protect action that need not need be locked for life of
transaction

50 UNISYS

Imagine it « Done

Latch Object Counters

> Counters

e Average Latch Wait Time (ms)
e Latch Waits/sec
e Total Latch Wait Time (ms)

51 UNISYS

Imagine it « Done

Avg. | atch Wait Time (ms) Counter

> Large values, e.g., greater than one
e Indicate large number of physical I/Os or long I/O times

e Check following counters
Page Reads/sec and Page Writes/sec

System PhysicalDisk object, especially Avg. Disk Sec/Transfer
e Often coincide with low buffer cache hit ratios

52 UNISYS

Imagine it « Done

% Disk Times & Queue | engths

> % Disk Times useless because they are simply
restatements of queue lengths using percent format

> Perfmon constrains these to 100%

> Queue lengths can no longer be interpreted as most
Windows performance books suggest, i.e., disk is in trouble
when queue length > 2

> Queue lengths of 14 or more are common, even on well-
performing I/O subsystems

53 UNISYS

Imagine it « Done

Physical /O Measurements

> Only I/O time is measured directly

> Disk driver provides I/O times to Windows
> Due to driver’s location in I/O path
* |/O time = service time + queue time

> May not be possible to improve large service
times due to physical or financial constraints

54 UNISYS

Imagine it « Done

Large SQL Server |/Os

> Beginning with Service Pack 3, SQL Server can generate
very large I/Os, e.qg., larger than 65,535 bytes

> 131,070 byte and larger I/0Os have been observed (see
Example #3)

> HBASs can be saturated fairly quickly under these
conditions

> 1/O service times can cause I/O times to be high even if
gueuing does not occur

55 UNiSYS

Imagine it « Done

/O Time Calculations

> Important to know whether queuing Is causing
large I/O times

> Use Little’s Law to compute missing statistics

56 UNISYS

Imagine it « Done

Little’'s Law

> N=X*R
* N => average # customers at a service center
e X => program completion rate

* R => average elapsed time

57 UNISYS

Imagine it « Done

Using Little’s Law to Compute Missing I/O-
Related Times

> All calculations use PhysicalDisk counters
> Disk Utilization = 100 - % Idle Time

> Disk service time = Disk Utilization / Disk
Transfers/sec

> Disk queue time = Avg. Disk sec/Transfer - Disk
service time

58 UNISYS

Imagine it « Done

> Disk Utilization = 36.57%
> Disk Transfers/sec = 0.65
> Avg. Disk sec/Transfer = 2.0095

> Disk service time = .3657 / 0.65 = 0.563 seconds
or 563 milliseconds

> Disk queue time = 2.0095 — 0.563 = 1.447 seconds
or 1,447 milliseconds

> Bytes/Transfer = 1,307

50 UNISYS

Imagine it « Done

> Disk Utilization = 77.67%
> Disk Transfers/sec = 30.89
> Avg. Disk sec/Transfer = 2.4424

> Disk service time =.7767 / 30.89 = 0.025 seconds
or 25 milliseconds

> Disk queue time = 2.4424 — 0.025 = 2.4174
seconds or 2,4174 milliseconds

> Bytes/Transfer = 22,437

60 UNiSYS

Imagine it « Done

RAID Example 1 vs. 2

> 1/O times are not that far apart despite being
outrageously high

> Queuing being encountered for both disks

> Low I/O rate of Disk #1 appears to contribute to
high service times

e 1,307 bytes should not require 563 ms

61 UNiSYS

Imagine it « Done

RAID Example 1 vs. 2

> Disk #2 Is doing much more work
e Utilization is double

e 1/O size is 17 times larger
e Service time IS much more reasonable @ 25 ms

> Problems began when faster processor complex
attached

> Solution was to reconfigure EMC drives

62 UNISYS

Imagine it « Done

> Disk Utilization = 99.59%
> Disk Transfers/sec = 58.2
> Avg. Disk sec/Transfer =0.7678

> Disk service time =0.9959/58.2 =0.0171 seconds
or 17.1 milliseconds

> Disk queue time =0.7678 — 0.0171 = 0.7507
seconds or 750.7 milliseconds

> Bytes/Transfer = 168,536

63 UNiSYS

Imagine it « Done

RAID Example #3 Discussion

> 100% utilization is suspicious, but RAID may be
functioning well enough

* In this case, it obviously is not

> 17 ms service times are good considering
average /O size

> Queuing is the problem
> Drives comprising disk were clearly saturated

64 UNiSYS

Imagine it « Done

RAID Example #3 Discussion

> Another disk processed 143.7 I/Os per second @
7.8 ms per /O

> Queue time was 2.1 ms

> Service time was 5.7 ms

> 28,786 Bytes/Transfer

> When all disks were combined, HBA was at the
limit

> Solution was to add drives and HBAS

65 UNISYS

Imagine it « Done

SQL Statement Handling
> Batch

e Group of SQL statements

e Possibly hundreds or thousands of lines

e Must be parsed and compiled into an optimized execution
plan

> Compilation and parsing can be

e Quite resource intensive

e Time-consuming

66 UNiSYS

Imagine it « Done

SQL Statistics Object
> Most important counters
e Batch Requests/sec
e SQL Compilations/sec
e SQL Re-Compilations/sec

> Use with Cache Manager object Cache Hit Ratio
counter

67 UNiSYS

Imagine it « Done

Batch Requests/sec

> Number of select, insert, and delete statements

> Each of these statements triggers a batch event,
which causes counter to be incremented

> Note: This includes each of these statement types
that are executed within a stored procedure

68 UNiSYS

Imagine it « Done

. i

> Documented in Q299641

> Batch Requests/sec can be compared with System Context
Switches/sec counter to highlight need for SQL Server
Connection Affinity

> Network packet comparison with System Context
Switches/sec counter also useful

> Processor % DPC Time counter can also be useful in this
endeavor

69 UNiSYS

Imagine it « Done

. i "

> Batch requests/sec correspond almost exactly
with System Context Switches/sec

> Network packet traffic also almost perfectly
matches System Context Switches/sec

> Processor DPC activities correspond closely as
well

70 UNISYS

Imagine it « Done

Batch Requests vs. Caontext Switching Graph

8,000 Batch requests/second Context Switches/second 60,000
7‘000 e e 1 54.000

1 + 48,000
6,000

42,000

5,000 36,000

4,000 30,000

3.000 24,000

18,000
2,000
12,000

0

Mo 1115 12320 145 200 416 530 €48 200 #75 10:320171:45 Tue 215 230 445 600 715 20 245 11001215 130 248 400 515 €20 745 500 10151130
Oct20 AM PM FM PM PM PM PM PM PFM PM PM Oct21 AM AM AM AM AM AM AM AM PM PM PM PM PM PM PM PFM PM PM
10:00 1:00
Ahd Ahd

— Batch Requests —— Context Switches/Sec — Context Switch Threshold

71 UNiSYS

Imagine it - Done

Network Card Packet Traffic & Context
Switches Graph

35.000 Packets/second Context Switches/second

60,000
| + 54,000
B0, 000 oo
1 -+ 48,000
25,000 42,000
20,000 36,000
30,000
15,000 24,000
10,000 18,000
12,000
5,000
6,000
0 =
Thu 145 230 515 700 245 1030 1215 200 345 530 7156 00 1045 Fridet 2156 400 545 730 915 MO0 1245 230 415 600 746 330 1115
Octa0 AM AM AM AM AM AM PM PM PM PM PM PM PM 3 AM AM AM AM AM AWM PM PM PM PM PM PM PM
12:00 12:30
Ab Ahd
— IntelR PRO 1000 XF Server Adapter —— Context Switches/Sec — Context Switch Threshold
[
72 UNISYS

Imagine it - Done

Processor Overview Graph

100% Percentage used Interrupts or DPCs/Second 8 000
90% e - 7,200
80% _ 6,400
70% 5,600
60% 4,800
50% 4,000
40% 3,200
30% 2,400
20% 1,600
10% 800

0% -
o T . DPC [Interrupt P
" I Kernel 3 User
—— Deferred Procedure Calls Queued — — Hardware Interrupts
73 UNISYS

Imagine it « Done

Stored Procedure Compilation

> Allows batch to be parsed and compiled only
once (hopefully)

> Execution plan cached & re-used unless
e Removed from cache

e Execution plan invalidated because of database changes

> If stored procedure requested after removal or
Invalidation, it is recompiled

) UNISYS

Imagine it « Done

Cache Manager Object

> Monitors various execution-related entities and their re-use
e Prepared SQL plans
e Procedure plans
e Trigger plans

e Normalized trees

> Used in SQL statement, stored procedure and trigger
compilation, optimization, and execution

75 UNISYS

Imagine it « Done

Cache Hit Ratio

> Most important
> Should be 90% or higher

> Lower values

e Indicate too many ad-hoc queries

e Often associated with higher values of
SQL Compilations/sec (SQL Statistics object)
SQL Re-Compilations/sec

76 UNISYS

Imagine it « Done

Guldelines

> SQL Compilations/sec should be less than 40% of
Batch Requests/sec

> High compilation rates frequently
e Correspond with lower Cache Manager cache hit ratios
e Indicate lack of stored procedure usage

e Indicate possible memory shortage

77 UNISYS

Imagine it « Done

General Statistics Object

> Useful in capacity planning situations

> Logins/sec
> Logouts/sec
> User Connections

> Useful in calculating work per user or connection

78 UNISYS

Imagine it « Done

Databases Object

> Each database is a performance counter instance

> Log and transaction counters most important

79 UNISYS

Imagine it « Done

Log

> Database journal

> Used for recovery
> Changes written here before database

> Can dramatically hinder database performance if
placed on busy disk

> Should be on own disk volume

e Minimizes disk head movement

80 UNiSYS

Imagine it « Done

Log Flush Wait Time Counter

> Measures total time database commits waited for
log flushes

> Obviously, should be small

81 UNiSYS

Imagine it « Done

500 __Milliseconds
B L B ki
400 T L
T | S R S
B L ey B
250 e
e (5 W 1 I | S s S
T o It L
L T T 1 B
50 1 P A]
P, V" & A S L 4RSS S SN, R R

Tue 1145 100 215 330 445 &00 715 &30 945 1100 Wed 130 245 400 515 &30 745 900 1016 1130 1245 200 F15 430 fd4E To00 156 930 1045
May AM PM PM FM FM PM PM PM PM PM May AM AM AM AM AM AM AM AM AM PM PM PM PM PFM FM FM FM PM

21 22
10:30 12156
Ahd A

82 UNISYS

Imagine it « Done

> Log Flushes/sec measures number of log buffers
flushed to disk

> Log Flush Waits/sec measures number of flushes
that had to wait

e Seems like an ideal number

> Waits should be subset of total?

e Unfortunately, only in some cases

83 UNiSYS

Imagine it « Done

Recovery Models

> Full Recovery

e Every database change logged

e Recover to last complete transaction
> Bulk-logged

e Bulk operations minimally logged

e Recover to end of transaction log backup
> Simple

e Recover to last database backup

> Waits a subset of Total only for Simple model, which is
used least in production

84 UNiSYS

Imagine it « Done

Other Database Counters

> Transactions/sec counter indicates which
databases updated most frequently

> Particularly important because all Tempdb
transactions are monitored

85 UNISYS

Imagine it « Done

Tempdb

> Contains all temporary disk tables and
workspaces

> Overuse can significantly hinder scalability
> Can become major bottleneck

> Use creatively designed queries to reduce
Tempdb activity

86 UNiSYS

Imagine it « Done

Table Variables

> More efficient than pure tables

> Unfortunately, still use Tempdb as other temporary tables
do

> Obviously, spreading Tempdb across several physical
disks helps performance

> Not so obviously, increasing number of physical Tempdb
files can reduce file access bottleneck, especially if Tempdb
hit very hard

87 UNiSYS

Imagine it « Done

Database Transaction Volumes Graph

Transactions per second

1,400 T
1,200
1,000 S

S | —

600 T e S

S e e

200 TORL oo, - PR

Wad 100 300 500 FO0 o 900 1100 Thu 300 &00 TO0 S00 1100 100 00 500 FO0 400 Sun 415 TO0 @00 18 1300 330 B30 Ta0 430 1130
Aug PM PM PM PM PM PM O Mg AM AM AM AM AM PM PM PM PM PM Aug AM O AM AM AM PM PM PM FM PM PM

14 15 1%
11:00 1:00 1:00
AM Ah AM

B Prod2 O Prod1 @M Tempdb

88 UNiSYS

Imagine it - Done

Other Database Counters

> Bulk Copy Throughput/sec

e Useful for monitoring efficiency and frequency of flat file loads into
database tables

> Bulk copies/inserts can easily cause table escalation and
locking

> Extremely efficient method for mass data loads

> Should be infrequent during online day

89 UNiSYS

Imagine it « Done

Statistics

> Computed for tables and indices

> Enables query optimization

> Can be expensive to create or update depending upon
sample size and frequency

> May want to update these manually during off-peak times
Instead of using automatic defaults

> DBCC Logical Scan Bytes/sec useful for detecting when
statistics recalculated

90 UNiSYS

Imagine it « Done

Statistics

> Set on by default in Tempdb
> Application Sentinel SQL Optimizer detects this

> Various options can be used to control impact of statistics
update or recreation
 FULLSCAN
e SAMPLE <n> PERCENT or ROWS
 RESAMPLE
e ALL or COLUMNS or INDEX

91 UNiSYS

Imagine it « Done

Database Size Counters
> Log File(s) Size (KB)
> Data File(s) Size (KB)
> Log File(s) Used Size (KB)
> Percent Log Used
> Log Growths
> Log Truncations
> Log Shrinks

o UNISYS

Imagine it « Done

Database Size Counters

> Useful for determining

e Volatility of log files
* Frequency of database and log expansion
e QOverall sizes of databases and their logs

> Minimize frequency of database and log
expansions

93 UNiSYS

Imagine it « Done

SQL Profiler

> Bad reputation as a resource hog and performance Kkiller
need not be deserved

> Excessive resource consumption caused by

* Requesting entities that are changed constantly, e.g., locks and
scans

* Not using duration filter

* Requesting too many entities

> Updating GUI on monitored machine

94 UNiSYS

Imagine it « Done

Events

> Entities that are monitored

> Careful use of templates can greatly reduce
resource consumption

> Unfortunately, duration filter does not control
Lock:Timeout event logging

* Most records returned will be zero duration

> Lock:Deadlock and Lock:Deadlock Timeout still
valuable events

o5 UNISYS

Imagine it « Done

Starting Events

> Following events usually unnecessary because
start time can be calculated from ending records
using duration
» Stored Procedures event class
SP:Starting, SP:StmtStarting, RPC:Starting
* T-SQL event class
SQL:BatchStarting, SQL:StmtStarting

96 UNiSYS

Imagine it « Done

Other Events

> Performance events

* Potentially very useful

e Execution Plan, Show Plan All, Show Plan Statistics, and Show
Plan Text difficult to decipher

> Errors and Warnings events

* Extremely useful for highlighting inefficient sorts, missing statistics,
inefficient joins

| ow overhead

97 UNiSYS

Imagine it « Done

Warnings Summary

Database ID | Object ID Event Name Event SubClass Name Integer Data Count
1 Sort Warnings Single pass 354
6 Sort Warnings Single pass 9,006
6 Sort Warnings Multiple pass 1,323
6 3 | Hash Warning Hash recursion 0 540
6 3 | Hash Warning Hash recursion 1 6
6 5 | Hash Warning Hash recursion 0 219
6 7 | Hash Warning Hash recursion 0 1,062
6 11 | Hash Warning Hash recursion 0 27,477
8 Sort Warnings Single pass 153
o
98 UNISYS

Imagine it « Done

> Most efficient to use sp_trace commands to

capture trace information because no GUI
Involved

> Better than using remote Profiler because
session does not restart after network
Interruption

99 UNiSYS

Imagine it « Done

sp_trace Commands

> sp_trace_create defines a trace, but does not start it

> sp_trace_setevent “adds or removes an event or event
column to a trace”

> sp_trace_setfilter “applies a filter to a trace”

> sp_trace_setstatus “modifies the current state of the
specified trace,” e.g., starts or stops trace

100 UNiSYS

Imagine it « Done

sp_trace

> Can be used to “sample” trace data instead of
continuously capturing data

e Collect for a few minutes and then stop

* Restart collection at some future point

> Useful on high-volume systems where any tracing
could be noticed

> Job can be set up to implement this

101 UNiSYS

Imagine it « Done

Using SQL Server to Analyze Traces
> Traces can be imported easily into a SQL Server database
using

e T-SQL commands
* SQL Profiler
> Stored Procedures can be used to
* Summarize data
* Replace numeric IDs with meaningful text
* |Locate offending queries

e Join trace data with other performance data

102 UNiSYS

Imagine it « Done

Conclusions

> Many performance counters available with SQL
Server

> Several have useful descriptions associated with
them, but many do not

> Most objects and counters pertain to SQL Server
as an entity without regard to a specific user,
guery, or database

103 UNiSYS

Imagine it « Done

Conclusions

> When complex applications access multiple
databases under one SQL Server instance,
PerfMon counters alone do not provide enough
Information

> Extremely important to combine SQL Server
performance information with system
performance information, especially processor,
memory, and I/O

104 UNiSYS

Imagine it « Done

Conclusions

> SOQL Query and SQL Profiler both provide
extremely useful insights into how specific
databases, queries, transactions, batches, and
stored procedures perform

105 UNiSYS

Imagine it « Done

Conclusions

> Many analysts believe that SQL Profiler cannot be run
against a production system without severely damaging
performance

> This need not be true!

> Lightweight Profiler templates or trace T-SQL routines can
be used to gather very specific and inexpensive information
regularly

106 UNiSYS

Imagine it « Done

Conclusions

> SQL Trace output can be imported into a SQL
Server database for fast and easy analysis

> Once specific queries or stored procedures have
been identified as offenders, additional data can
be gathered for just those entities

107 UNiSYS

Imagine it « Done

References
> Kalen Delaney, Inside Microsoft SQL Server 2000

> Mark Friedman and Odysseas Pentakalos,
Windows 2000 Performance Guide

> Microsoft SQL Server 2000 Books Online

108 UNiSYS

Imagine it « Done

References

> Edward Whalen, Marcilina Garcia, Steve Del uca,
and Dean Thompson, Microsoft SQL Server 2000
Performance Tuning

109 UNiSYS

Imagine it « Done

	SQL Server Performance Assessment and Optimization Techniques
	Emphasis of Presentation
	Overview
	Overview
	PerfMon Counter Hierarchy
	Object Hierarchy Examples
	SQL Server Objects
	SQL Server Objects
	SQL Server Object List
	SQL Server Object List
	Buffer Manager and Buffer Partition Objects
	Buffer Cache Hit Ratio
	Detecting Insufficient SQL Memory
	SQL Server Only App and Single Instance
	AWE and SQL Server Using All Memory Automatically
	AWE and SQL Server Using All Memory Automatically
	AWE User Experiences #1
	AWE User Experiences #2
	Available & Cache Memory
	SQL One of Many Apps
	Increasing SQL Memory
	Free Pages Counter
	FreeList Stalls Counter
	FreeList Stalls Graph
	Stolen Pages Counter
	Database I/O Counters
	I/O Activity Graph
	Page Lookups/sec Counter
	Buffer Cache Hit Ratio - Revisited
	Page Lookups Graph
	Memory Manager Object
	Access Methods Object
	Forwarded Records
	Forwarded Records
	Detecting Forwarded Records
	Forwarded Records/sec
	Forwarded Records Graph
	Full Scans
	Access Method Graph
	I/O Activity vs. Access Methods
	SQL Server I/O, Forwarded Record, & Full Scan Graph
	Locks Object
	Lock Types/Instances
	Lock Timeouts Graph
	Other Lock Counters
	Total Lock Wait Times
	Lock Escalations
	Table Lock Escalations
	Lock Block & Lock Block Owners Graph
	Latches
	Latch Object Counters
	Avg. Latch Wait Time (ms) Counter
	% Disk Times & Queue Lengths
	Physical I/O Measurements
	Large SQL Server I/Os
	I/O Time Calculations
	Little’s Law
	Using Little’s Law to Compute Missing I/O-Related Times
	RAID Example Calculations #1
	RAID Example Calculations #2
	RAID Example 1 vs. 2
	RAID Example 1 vs. 2
	RAID Example Calculations #3
	RAID Example #3 Discussion
	RAID Example #3 Discussion
	SQL Statement Handling
	SQL Statistics Object
	Batch Requests/sec
	SQL Server Connection Affinity
	Connection Affinity Example
	Batch Requests vs. Context Switching Graph
	Network Card Packet Traffic & Context Switches Graph
	Processor Overview Graph
	Stored Procedure Compilation
	Cache Manager Object
	Cache Hit Ratio
	Guidelines
	General Statistics Object
	Databases Object
	Log
	Log Flush Wait Time Counter
	Average Log Write Waiting Times Graph
	Potentially Confusing Log Counters
	Recovery Models
	Other Database Counters
	Tempdb
	Table Variables
	Database Transaction Volumes Graph
	Other Database Counters
	Statistics
	Statistics
	Database Size Counters
	Database Size Counters
	SQL Profiler
	Events
	Starting Events
	Other Events
	Warnings Summary
	sp_trace Instead of Profiler
	sp_trace Commands
	sp_trace
	Using SQL Server to Analyze Traces
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	References
	References

