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> Interpretation and usage of informative
performance counters

> Expand upon PerfMon explanations
> ALL graphs of actual customer data

> Insights acquired from analysis of many
customer data sets

> Possible courses of action
> SQL Profiler usage considerations
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> SQL Server

* Measures many activities, but only certain ones can be traced to a
specific database

* None can be traced back to a specific query

e Sometimes need additional tools such as SQL Profiler (SQL Server
trace) to complete analyses

> Must monitor other performance objects

> Presentation refers to SQL Server objects unless otherwise
noted
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Qverview

> Many PerfMon explanations useless

> Example explanations

e SQL Compilations/sec is “Number of SQL compilations™

e Table Lock Escalations/sec is “The number of times locks on
a table were escalated”

e Bulk Copy Rows/sec is “Number of rows bulk copied per
second”
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PerfMon Counter Hierarchy

> Three-level hierarchy

> Objects at top level

> Counters
e Comprise bottom level

e Always pertain to a particular object

> Instance level added between object and counter
levels when necessary
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Object Hierarchy Examples

> Processor object - Processor 0 instance 2 %
Processor Time counter

> Memory object - Page writes/sec counter

6 UNISYS

Imagine it « Done



SQL Server Objects

> One set per SQL Server instance

> Each set divided into 17 categories
> 4 memory-related
> 2 lock-related
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SQL Server Objects

> 7 measure database backup, replication, and user
settable categories

e Applicable to database backup and replication performance,
as well as specifically defined and maintained user counters

> Rest involve database transactions, log handling,
and database access activities
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SQL Server Object List

SQL Server Objects Category
SQL Server: Access Methods Database access
SQL Server: Backup Device Database backup
SQL Server: Buffer Manager Memory management
SQL Server: Buffer Partition Memory management
SQL Server: Cache Manager Memory management
SQL Server: Databases Transactions & log handling
SQL Server: General Statistics User connections
SQL Server: Latches Locking
SQL Server: Locks Locking
SQL Server: Memory Manager Memory management
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SQL Server Object List

SQL Server Objects Category
SQL Server: Replication Agents Database replication
SQL Server: Replication Dist. Database replication

SQL Server: Replication Logreader Database replication

SQL Server: Replication Merge Database replication
SQL Server: Replication Snapshot Database replication
SQL Server: SQL Statistics SQL command activities
SQL Server: User Settable User defined
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Buffer Manager and Buffer Partition
Objects

> 21 counters

> 5involve Address Windowing Extensions (AWE)
> AWE covered indirectly
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Buffer Cache

It Ratio

> Frequency with which database read requests are
satisfied from database cache memory instead of

disk

> Higher values result in lower disk usage

> Recommended value at least 90%

> Raw performance data can sometimes exceed

100%
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> Compare Memory Manager object’s Target Server
Memory (KB) with Total Server Memory (KB)
counters

> If Total less than Target, possibly insufficient
memory

> If comparison too small or Buffer Cache Hit Ratio
Is too low, allocate more memory to SQL Server,
If possible
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SQl Server Only App and Single Instance
> If SQL Server only application on system and

there is only one instance, decisions may be
simpler

e Reconfigure to use all of memory automatically, if not
already doing so and not using AWE

e Add more memory

14 UNiSYS

Imagine it « Done



AWE and SQL Server Using All Memory
Automatically

> Setting SQL Server to use all memory has often
caused problems when AWE used on Windows
2000

> Can cause system to

e Exhaust Windows memory

e Page heavily
> AWE-related tables hard to identify
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AWE and SQL Server Using All Memory
Automatically

> Scalability experts have stated that AWE-related
tables consume more Windows memory as more
AWE memory locations accessed (at least on
Windows 2000)

> Experience has shown this to be true
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> 30 GB allocated to SQL Server on 32 GB system

e System paged heavily after user activity increased

e Little or no available memory for Windows

e Could not attribute Windows memory usage to a process
> Reduced allocation to 28 GB

e Paging ceased

e Both system and SQL Server ran fine

e Buffer cache hit ratio hardly affected
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> All but 65 MB allocated to SQL Server on 8 GB system

e System ran fine for several weeks, but available memory decreased very
slowly

> Full text index creation executed

e System cache increased

e |ndex creation programs required non-SQL memory
> System began to page heavily

e Little or no available memory for Windows

e System basically stopped functioning when available memory dropped
below 4 MB

> SOQL memory allocation reduced to insure 678 MB available —
problems ceased permanently

18 UNISYS

Imagine it « Done



100,000,000

90,000,000
80,000,000
70,000,000

60,000,000

50,000,000
40,000,000

30,000,000

20,000,000

10,000,000

0

TO00s  TIZ206 724102 TIE00 74818 #0015 1245 32441 33637 4353 00456 944356 100356 1001548 102815 104006 105157 110347 111614
Abd Abd Abd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd Ahd

— Available Memory —— Cache Memory — Windows Memory Threshold

19 UNISYS

Imagine it - Done



SQL One of Many Apps

> Decisions much more complex if SQL Server NOT only
major application on computer or multiple instances exist

> Classic system versus database conflict

e Allocating too much memory to SQL Server can harm other
applications, SQL Server instances, or Windows, unless sufficient
memory can be added

> Need to match instance memory with business
requirements
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> Make very gradual changes
> Monitor system Memory object counters before
and after any changes

e Page writes/sec

e Available Bytes

Insure Windows 4 MB available memory limit impossible to
reach, regardless of application activities
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Free Pages Counter

> Number of memory buffers available to receive
database pages read from disk

> Indicator of insufficient SQL Server memory

> Values consistently close to zero indicate SQL
Server memory shortage

> Closely associated with Free list stalls/sec
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Freel ist Stalls Counter

> Frequency with which requests for available
database pages are suspended because no
buffers are available

> Free list stall rates of 3 or 4 per second indicate
too little SQL memory available
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Freel ist Stalls Graph
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Stolen Pages Counter

> Pages “stolen” when Windows requires memory
for another application

> Useful indicator of overall system memory
shortage

> Short periods may be normal

> Example: system backup begins after large
database batch run completes
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Database 1/0O Counters

> Page Reads/sec and Page Writes/sec counters

> Measures physical 1/0s, not logical I/Os

> May indicate
e Insufficient database memory
e Applications improperly accessing database

e Improper database table implementation
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/0 Activity Graph
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Page Lookups/sec Counter

> Measures number of times database attempted to
find a page in buffer pool

> Logical read

> Useful for corroborating and further quantifying
buffer cache hit ratio

> Compare Page Reads/sec with Page lookups/sec
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Buffer Cache Hit Ratio - Revisited
> Can perform computation when more precision
necessary, e.g., 30 of 32 GB allocated to SQL

> 1 — (Page reads/sec / Page lookups/sec)
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Page Lookups Graph
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Memory Manager Object

> Counters can be used to develop SQL Server
memory composition graph

e Connection Memory (KB)

e Granted Workspace Memory (KB)
e Lock Memory (KB)

e Optimizer Memory (KB)

e SQL Cache Memory (KB)

> Monitor lock blocks
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Access Methods Object

> Most helpful counters

e Forwarded Records/sec
e Full Scans/sec

e Index Searches/sec

e Range Scans/sec

e Table Lock Escalations/sec
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Forwarded Records

> Only occur in tables without clustered indices, i.e., heaps

> Occur when row/record moved from one database page to
another because changed record cannot fit back in original

page
e Image data, i.e., bitmap data
e Variable-length string data

> Most frequently occur in Tempdb
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Forwarded Records

> Creates de facto physical linear search, which
can cause long record access times and high
page read rates

> Adding clustered index is simplest way to
eliminate problem

e Use as few data columns as possible

> Otherwise, create records that are large enough
to accommodate changes
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> Two ways to determine total count of forwarded records in a table

> Enable trace flag 2509 and execute DBCC CHECKTABLE
command as shown below

« DBCC TRACEON (2509)

¢ GO

¢ DBCC CHECKTABLE (<table name>)
OR

> Execute DBCC SHOWCONTIG using TABLERESULTS option as
shown below

* DBCC SHOWCONTIG (<table name>) WITH TABLERESULTS
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Forwarded Records/sec

> Measures # of records fetched via forwarded
record pointers

> Since forward record “chains” are prevented by
SQL Server, counter refers to actual record count,
not number of pointer “chases”
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Forwarded Records Graph
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Full Scans

> Unrestricted linear searches through table or index
> Example SQL statement
e SELECT * FROM TABLETHATISAHEAP

> SQL Query Estimated Execution Plan can identify them
ahead of time

> SQL Query Actual Execution Plan and SQL Profiler (trace)
can identify them when they occur

> Trace records contain logical reads and writes
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Access Method Graph
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> Direct graphical comparison of these entities is very helpful

> Shows whether physical and logical linear searches, i.e.,
forwarded records and full scans, result in physical I/Os or
are completely satisfied from memory

> Many linear searches can be against very short tables that
are always in memory

> Comparison distinguishes relatively harmless ones from
those that impact the I/O subsystem
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SQL Server I/O, Forwarded Record, & Full
Scan Graph
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Locks Object
> One of the most important objects

> Number of Deadlocks/sec critical

> SQL Profiler can provide information about how
deadlock was created

> Lock Timeouts/sec also critical

e # of lock requests that exceed maximum specified wait time

e Monitors each type of lock
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Lock Types/Instances

ltem Description
Database Entire database
Extent Contiguous group of 8 data pages or index pages
Key Row lock within index
Page 8-kilobyte (KB) data page or index page
RID Row ID. Used to lock single row within table
Table Entire table, including all data & indices
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Lock Timeouts Graph
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Other L ock Counters

> Average Wait Time (ms)
e Measures average time each lock request was forced to wait

> Useful to sum these to prevent averages from disguising
problems

e Calculate percentage of interval spent waiting
> Lock Waits/sec

e Records how often lock requests waited
> Trace duration filter does not apply to lock timeouts
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Lock Escalations

> Row, key, or page locks automatically escalated to coarser
table locks as appropriate

e Single table lock acquired
e Many lower level locks released

> Recorded in Table Lock Escalations/sec

> Lock Owner Blocks Allocated and Lock Blocks Allocated
can be used to validate that applications hold too many
locks for too long
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Table L ock Escalations

70 Escalations/second

60

50

40

30

20

10

LI e e e e e e e O e e e e e
Thu 115 230 345 500 €15 TE0 45 1000 1115 1230 145 00 415 B30 &ds 00 215 1030 1M14E P 215 330 445 600 TS #3000 sdE 1100
May  AM AM AM AM AM O AM AM AM AM PM PM PM PM O FM O PM PM PM FM O PM May  AM O AM O AM O AM AWM AM AM AM

23 24
12:00 1:00
Ahd Abd

48 UNISYS

Imagine it « Done



Lock Block & L.ock Block Owners Graph
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Latches
> Latches

e Lightweight, short-term synchronization objects

e Protect action that need not need be locked for life of
transaction
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Latch Object Counters

> Counters

e Average Latch Wait Time (ms)
e Latch Waits/sec
e Total Latch Wait Time (ms)
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Avg. | atch Wait Time (ms) Counter

> Large values, e.g., greater than one
e Indicate large number of physical I/Os or long I/O times

e Check following counters
Page Reads/sec and Page Writes/sec

System PhysicalDisk object, especially Avg. Disk Sec/Transfer
e Often coincide with low buffer cache hit ratios
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% Disk Times & Queue | engths

> % Disk Times useless because they are simply
restatements of queue lengths using percent format

> Perfmon constrains these to 100%

> Queue lengths can no longer be interpreted as most
Windows performance books suggest, i.e., disk is in trouble
when queue length > 2

> Queue lengths of 14 or more are common, even on well-
performing I/O subsystems
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Physical /O Measurements

> Only I/O time is measured directly

> Disk driver provides I/O times to Windows
> Due to driver’s location in I/O path
* |/O time = service time + queue time

> May not be possible to improve large service
times due to physical or financial constraints
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Large SQL Server |/Os

> Beginning with Service Pack 3, SQL Server can generate
very large I/Os, e.qg., larger than 65,535 bytes

> 131,070 byte and larger I/0Os have been observed (see
Example #3)

> HBASs can be saturated fairly quickly under these
conditions

> 1/O service times can cause I/O times to be high even if
gueuing does not occur
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/O Time Calculations

> Important to know whether queuing Is causing
large I/O times

> Use Little’s Law to compute missing statistics
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Little’'s Law

> N=X*R
* N => average # customers at a service center
e X => program completion rate

* R => average elapsed time
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Using Little’s Law to Compute Missing I/O-
Related Times

> All calculations use PhysicalDisk counters
> Disk Utilization = 100 - % Idle Time

> Disk service time = Disk Utilization / Disk
Transfers/sec

> Disk queue time = Avg. Disk sec/Transfer - Disk
service time
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> Disk Utilization = 36.57%
> Disk Transfers/sec = 0.65
> Avg. Disk sec/Transfer = 2.0095

> Disk service time = .3657 / 0.65 = 0.563 seconds
or 563 milliseconds

> Disk queue time = 2.0095 — 0.563 = 1.447 seconds
or 1,447 milliseconds

> Bytes/Transfer = 1,307
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> Disk Utilization = 77.67%
> Disk Transfers/sec = 30.89
> Avg. Disk sec/Transfer = 2.4424

> Disk service time =.7767 / 30.89 = 0.025 seconds
or 25 milliseconds

> Disk queue time = 2.4424 — 0.025 = 2.4174
seconds or 2,4174 milliseconds

> Bytes/Transfer = 22,437
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RAID Example 1 vs. 2

> 1/O times are not that far apart despite being
outrageously high

> Queuing being encountered for both disks

> Low I/O rate of Disk #1 appears to contribute to
high service times

e 1,307 bytes should not require 563 ms
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RAID Example 1 vs. 2

> Disk #2 Is doing much more work
e Utilization is double

e 1/O size is 17 times larger
e Service time IS much more reasonable @ 25 ms

> Problems began when faster processor complex
attached

> Solution was to reconfigure EMC drives
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> Disk Utilization = 99.59%
> Disk Transfers/sec = 58.2
> Avg. Disk sec/Transfer =0.7678

> Disk service time =0.9959/58.2 =0.0171 seconds
or 17.1 milliseconds

> Disk queue time =0.7678 — 0.0171 = 0.7507
seconds or 750.7 milliseconds

> Bytes/Transfer = 168,536
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RAID Example #3 Discussion

> 100% utilization is suspicious, but RAID may be
functioning well enough

* In this case, it obviously is not

> 17 ms service times are good considering
average /O size

> Queuing is the problem
> Drives comprising disk were clearly saturated
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RAID Example #3 Discussion

> Another disk processed 143.7 I/Os per second @
7.8 ms per /O

> Queue time was 2.1 ms

> Service time was 5.7 ms

> 28,786 Bytes/Transfer

> When all disks were combined, HBA was at the
limit

> Solution was to add drives and HBAS
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SQL Statement Handling
> Batch

e Group of SQL statements

e Possibly hundreds or thousands of lines

e Must be parsed and compiled into an optimized execution
plan

> Compilation and parsing can be

e Quite resource intensive

e Time-consuming
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SQL Statistics Object
> Most important counters
e Batch Requests/sec
e SQL Compilations/sec
e SQL Re-Compilations/sec

> Use with Cache Manager object Cache Hit Ratio
counter
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Batch Requests/sec

> Number of select, insert, and delete statements

> Each of these statements triggers a batch event,
which causes counter to be incremented

> Note: This includes each of these statement types
that are executed within a stored procedure
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> Documented in Q299641

> Batch Requests/sec can be compared with System Context
Switches/sec counter to highlight need for SQL Server
Connection Affinity

> Network packet comparison with System Context
Switches/sec counter also useful

> Processor % DPC Time counter can also be useful in this
endeavor
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> Batch requests/sec correspond almost exactly
with System Context Switches/sec

> Network packet traffic also almost perfectly
matches System Context Switches/sec

> Processor DPC activities correspond closely as
well
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Batch Requests vs. Caontext Switching Graph
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Network Card Packet Traffic & Context
Switches Graph
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Processor Overview Graph
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Stored Procedure Compilation

> Allows batch to be parsed and compiled only
once (hopefully)

> Execution plan cached & re-used unless
e Removed from cache

e Execution plan invalidated because of database changes

> If stored procedure requested after removal or
Invalidation, it is recompiled
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Cache Manager Object

> Monitors various execution-related entities and their re-use
e Prepared SQL plans
e Procedure plans
e Trigger plans

e Normalized trees

> Used in SQL statement, stored procedure and trigger
compilation, optimization, and execution
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Cache Hit Ratio

> Most important
> Should be 90% or higher

> Lower values

e Indicate too many ad-hoc queries

e Often associated with higher values of
SQL Compilations/sec (SQL Statistics object)
SQL Re-Compilations/sec
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Guldelines

> SQL Compilations/sec should be less than 40% of
Batch Requests/sec

> High compilation rates frequently
e Correspond with lower Cache Manager cache hit ratios
e Indicate lack of stored procedure usage

e Indicate possible memory shortage
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General Statistics Object

> Useful in capacity planning situations

> Logins/sec
> Logouts/sec
> User Connections

> Useful in calculating work per user or connection
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Databases Object

> Each database is a performance counter instance

> Log and transaction counters most important
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Log

> Database journal

> Used for recovery
> Changes written here before database

> Can dramatically hinder database performance if
placed on busy disk

> Should be on own disk volume

e Minimizes disk head movement
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Log Flush Wait Time Counter

> Measures total time database commits waited for
log flushes

> Obviously, should be small
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> Log Flushes/sec measures number of log buffers
flushed to disk

> Log Flush Waits/sec measures number of flushes
that had to wait

e Seems like an ideal number

> Waits should be subset of total?

e Unfortunately, only in some cases
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Recovery Models

> Full Recovery

e Every database change logged

e Recover to last complete transaction
> Bulk-logged

e Bulk operations minimally logged

e Recover to end of transaction log backup
> Simple

e Recover to last database backup

> Waits a subset of Total only for Simple model, which is
used least in production
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Other Database Counters

> Transactions/sec counter indicates which
databases updated most frequently

> Particularly important because all Tempdb
transactions are monitored
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Tempdb

> Contains all temporary disk tables and
workspaces

> Overuse can significantly hinder scalability
> Can become major bottleneck

> Use creatively designed queries to reduce
Tempdb activity
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Table Variables

> More efficient than pure tables

> Unfortunately, still use Tempdb as other temporary tables
do

> Obviously, spreading Tempdb across several physical
disks helps performance

> Not so obviously, increasing number of physical Tempdb
files can reduce file access bottleneck, especially if Tempdb
hit very hard
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Database Transaction Volumes Graph
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Other Database Counters

> Bulk Copy Throughput/sec

e Useful for monitoring efficiency and frequency of flat file loads into
database tables

> Bulk copies/inserts can easily cause table escalation and
locking

> Extremely efficient method for mass data loads

> Should be infrequent during online day
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Statistics

> Computed for tables and indices

> Enables query optimization

> Can be expensive to create or update depending upon
sample size and frequency

> May want to update these manually during off-peak times
Instead of using automatic defaults

> DBCC Logical Scan Bytes/sec useful for detecting when
statistics recalculated
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Statistics

> Set on by default in Tempdb
> Application Sentinel SQL Optimizer detects this

> Various options can be used to control impact of statistics
update or recreation
 FULLSCAN
e SAMPLE <n> PERCENT or ROWS
 RESAMPLE
e ALL or COLUMNS or INDEX
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Database Size Counters
> Log File(s) Size (KB)
> Data File(s) Size (KB)
> Log File(s) Used Size (KB)
> Percent Log Used
> Log Growths
> Log Truncations
> Log Shrinks
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Database Size Counters

> Useful for determining

e Volatility of log files
* Frequency of database and log expansion
e QOverall sizes of databases and their logs

> Minimize frequency of database and log
expansions
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SQL Profiler

> Bad reputation as a resource hog and performance Kkiller
need not be deserved

> Excessive resource consumption caused by

* Requesting entities that are changed constantly, e.g., locks and
scans

* Not using duration filter

* Requesting too many entities

> Updating GUI on monitored machine
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Events

> Entities that are monitored

> Careful use of templates can greatly reduce
resource consumption

> Unfortunately, duration filter does not control
Lock:Timeout event logging

* Most records returned will be zero duration

> Lock:Deadlock and Lock:Deadlock Timeout still
valuable events
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Starting Events

> Following events usually unnecessary because
start time can be calculated from ending records
using duration
» Stored Procedures event class
SP:Starting, SP:StmtStarting, RPC:Starting
* T-SQL event class
SQL:BatchStarting, SQL:StmtStarting
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Other Events

> Performance events

* Potentially very useful

e Execution Plan, Show Plan All, Show Plan Statistics, and Show
Plan Text difficult to decipher

> Errors and Warnings events

* Extremely useful for highlighting inefficient sorts, missing statistics,
inefficient joins

| ow overhead
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Warnings Summary

Database ID | Object ID Event Name Event SubClass Name Integer Data Count
1 Sort Warnings Single pass 354
6 Sort Warnings Single pass 9,006
6 Sort Warnings Multiple pass 1,323
6 3 | Hash Warning Hash recursion 0 540
6 3 | Hash Warning Hash recursion 1 6
6 5 | Hash Warning Hash recursion 0 219
6 7 | Hash Warning Hash recursion 0 1,062
6 11 | Hash Warning Hash recursion 0 27,477
8 Sort Warnings Single pass 153
o
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> Most efficient to use sp_trace commands to

capture trace information because no GUI
Involved

> Better than using remote Profiler because
session does not restart after network
Interruption

99 UNiSYS

Imagine it « Done



sp_trace Commands

> sp_trace_create defines a trace, but does not start it

> sp_trace_setevent “adds or removes an event or event
column to a trace”

> sp_trace_setfilter “applies a filter to a trace”

> sp_trace_setstatus “modifies the current state of the
specified trace,” e.g., starts or stops trace
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sp_trace

> Can be used to “sample” trace data instead of
continuously capturing data

e Collect for a few minutes and then stop

* Restart collection at some future point

> Useful on high-volume systems where any tracing
could be noticed

> Job can be set up to implement this
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Using SQL Server to Analyze Traces
> Traces can be imported easily into a SQL Server database
using

e T-SQL commands
* SQL Profiler
> Stored Procedures can be used to
* Summarize data
* Replace numeric IDs with meaningful text
* |Locate offending queries

e Join trace data with other performance data
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Conclusions

> Many performance counters available with SQL
Server

> Several have useful descriptions associated with
them, but many do not

> Most objects and counters pertain to SQL Server
as an entity without regard to a specific user,
guery, or database
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Conclusions

> When complex applications access multiple
databases under one SQL Server instance,
PerfMon counters alone do not provide enough
Information

> Extremely important to combine SQL Server
performance information with system
performance information, especially processor,
memory, and I/O
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Conclusions

> SOQL Query and SQL Profiler both provide
extremely useful insights into how specific
databases, queries, transactions, batches, and
stored procedures perform
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Conclusions

> Many analysts believe that SQL Profiler cannot be run
against a production system without severely damaging
performance

> This need not be true!

> Lightweight Profiler templates or trace T-SQL routines can
be used to gather very specific and inexpensive information
regularly
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Conclusions

> SQL Trace output can be imported into a SQL
Server database for fast and easy analysis

> Once specific queries or stored procedures have
been identified as offenders, additional data can
be gathered for just those entities
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