
SQL Server Performance
Assessment and
Optimization Techniques

Jeffry A. Schwartz
Windows Technology
Symposium
December 6, 2004
Las Vegas, NV
jeffstx3@frontiernet.net

2

Emphasis of Presentation
Interpretation and usage of informative
performance counters
Expand upon PerfMon explanations
ALL graphs of actual customer data
Insights acquired from analysis of many
customer data sets
Possible courses of action
SQL Profiler usage considerations

3

Overview
SQL Server

• Measures many activities, but only certain ones can be traced to a
specific database

• None can be traced back to a specific query

• Sometimes need additional tools such as SQL Profiler (SQL Server
trace) to complete analyses

Must monitor other performance objects
Presentation refers to SQL Server objects unless otherwise
noted

4

Overview
Many PerfMon explanations useless
Example explanations

• SQL Compilations/sec is “Number of SQL compilations”

• Table Lock Escalations/sec is “The number of times locks on
a table were escalated”

• Bulk Copy Rows/sec is “Number of rows bulk copied per
second”

5

PerfMon Counter Hierarchy
Three-level hierarchy
Objects at top level
Counters

• Comprise bottom level

• Always pertain to a particular object

Instance level added between object and counter
levels when necessary

6

Object Hierarchy Examples
Processor object Processor 0 instance %
Processor Time counter
Memory object Page writes/sec counter

7

SQL Server Objects
One set per SQL Server instance
Each set divided into 17 categories
4 memory-related
2 lock-related

8

SQL Server Objects
7 measure database backup, replication, and user
settable categories

• Applicable to database backup and replication performance,
as well as specifically defined and maintained user counters

Rest involve database transactions, log handling,
and database access activities

9

SQL Server Object List
SQL Server Objects Category

SQL Server: Access Methods Database access

SQL Server: Backup Device Database backup

SQL Server: Buffer Manager Memory management

SQL Server: Buffer Partition Memory management

SQL Server: Cache Manager Memory management

SQL Server: Databases Transactions & log handling

SQL Server: General Statistics User connections

SQL Server: Latches Locking

SQL Server: Locks Locking

SQL Server: Memory Manager Memory management

10

SQL Server Object List
SQL Server Objects Category

SQL Server: Replication Agents Database replication

SQL Server: Replication Dist. Database replication

SQL Server: Replication Logreader Database replication

SQL Server: Replication Merge Database replication

SQL Server: Replication Snapshot Database replication

SQL Server: SQL Statistics SQL command activities

SQL Server: User Settable User defined

11

Buffer Manager and Buffer Partition
Objects

21 counters
5 involve Address Windowing Extensions (AWE)
AWE covered indirectly

12

Buffer Cache Hit Ratio
Frequency with which database read requests are
satisfied from database cache memory instead of
disk
Higher values result in lower disk usage
Recommended value at least 90%
Raw performance data can sometimes exceed
100%

13

Detecting Insufficient SQL Memory
Compare Memory Manager object’s Target Server
Memory (KB) with Total Server Memory (KB)
counters
If Total less than Target, possibly insufficient
memory
If comparison too small or Buffer Cache Hit Ratio
is too low, allocate more memory to SQL Server,
if possible

14

SQL Server Only App and Single Instance
If SQL Server only application on system and
there is only one instance, decisions may be
simpler

• Reconfigure to use all of memory automatically, if not
already doing so and not using AWE

• Add more memory

15

AWE and SQL Server Using All Memory
Automatically

Setting SQL Server to use all memory has often
caused problems when AWE used on Windows
2000
Can cause system to

• Exhaust Windows memory

• Page heavily

AWE-related tables hard to identify

16

AWE and SQL Server Using All Memory
Automatically

Scalability experts have stated that AWE-related
tables consume more Windows memory as more
AWE memory locations accessed (at least on
Windows 2000)
Experience has shown this to be true

17

AWE User Experiences #1
30 GB allocated to SQL Server on 32 GB system

• System paged heavily after user activity increased
• Little or no available memory for Windows
• Could not attribute Windows memory usage to a process

Reduced allocation to 28 GB
• Paging ceased
• Both system and SQL Server ran fine
• Buffer cache hit ratio hardly affected

18

AWE User Experiences #2
All but 65 MB allocated to SQL Server on 8 GB system

• System ran fine for several weeks, but available memory decreased very
slowly

Full text index creation executed
• System cache increased
• Index creation programs required own non-SQL memory

System began to page heavily
• Little or no available memory for Windows
• System basically stopped functioning when available memory dropped

below 4 MB
SQL memory allocation reduced to insure 678 MB available –
problems ceased permanently

19

Available & Cache Memory

20

SQL One of Many Apps
Decisions much more complex if SQL Server NOT only
major application on computer or multiple instances exist
Classic system versus database conflict

• Allocating too much memory to SQL Server can harm other
applications, SQL Server instances, or Windows, unless sufficient
memory can be added

Need to match instance memory with business
requirements

21

Increasing SQL Memory
Make very gradual changes
Monitor system Memory object counters before
and after any changes

• Page writes/sec

• Available Bytes
- Insure Windows 4 MB available memory limit impossible to

reach, regardless of application activities

22

Free Pages Counter
Number of memory buffers available to receive
database pages read from disk
Indicator of insufficient SQL Server memory
Values consistently close to zero indicate SQL
Server memory shortage
Closely associated with Free list stalls/sec

23

FreeList Stalls Counter
Frequency with which requests for available
database pages are suspended because no
buffers are available
Free list stall rates of 3 or 4 per second indicate
too little SQL memory available

24

FreeList Stalls Graph

25

Stolen Pages Counter
Pages “stolen” when Windows requires memory
for another application
Useful indicator of overall system memory
shortage
Short periods may be normal
Example: system backup begins after large
database batch run completes

26

Database I/O Counters
Page Reads/sec and Page Writes/sec counters
Measures physical I/Os, not logical I/Os
May indicate

• Insufficient database memory

• Applications improperly accessing database

• Improper database table implementation

27

I/O Activity Graph

28

Page Lookups/sec Counter
Measures number of times database attempted to
find a page in buffer pool
Logical read
Useful for corroborating and further quantifying
buffer cache hit ratio
Compare Page Reads/sec with Page lookups/sec

29

Buffer Cache Hit Ratio - Revisited
Can perform computation when more precision
necessary, e.g., 30 of 32 GB allocated to SQL
1 – (Page reads/sec / Page lookups/sec)

30

Page Lookups Graph

31

Memory Manager Object
Counters can be used to develop SQL Server
memory composition graph

• Connection Memory (KB)

• Granted Workspace Memory (KB)

• Lock Memory (KB)

• Optimizer Memory (KB)

• SQL Cache Memory (KB)

Monitor lock blocks

32

Access Methods Object
Most helpful counters

• Forwarded Records/sec

• Full Scans/sec

• Index Searches/sec

• Range Scans/sec

• Table Lock Escalations/sec

33

Forwarded Records
Only occur in tables without clustered indices, i.e., heaps
Occur when row/record moved from one database page to
another because changed record cannot fit back in original
page

• Image data, i.e., bitmap data

• Variable-length string data

Most frequently occur in Tempdb

34

Forwarded Records
Creates de facto physical linear search, which
can cause long record access times and high
page read rates
Adding clustered index is simplest way to
eliminate problem

• Use as few data columns as possible

Otherwise, create records that are large enough
to accommodate changes

35

Detecting Forwarded Records
Two ways to determine total count of forwarded records in a table
Enable trace flag 2509 and execute DBCC CHECKTABLE
command as shown below

• DBCC TRACEON (2509)
• GO
• DBCC CHECKTABLE (<table name>)

OR
Execute DBCC SHOWCONTIG using TABLERESULTS option as
shown below

• DBCC SHOWCONTIG (<table name>) WITH TABLERESULTS

36

Forwarded Records/sec
Measures # of records fetched via forwarded
record pointers
Since forward record “chains” are prevented by
SQL Server, counter refers to actual record count,
not number of pointer “chases”

37

Forwarded Records Graph

38

Full Scans
Unrestricted linear searches through table or index
Example SQL statement

• SELECT * FROM TABLETHATISAHEAP
SQL Query Estimated Execution Plan can identify them
ahead of time
SQL Query Actual Execution Plan and SQL Profiler (trace)
can identify them when they occur
Trace records contain logical reads and writes

39

Access Method Graph

40

I/O Activity vs. Access Methods
Direct graphical comparison of these entities is very helpful
Shows whether physical and logical linear searches, i.e.,
forwarded records and full scans, result in physical I/Os or
are completely satisfied from memory
Many linear searches can be against very short tables that
are always in memory
Comparison distinguishes relatively harmless ones from
those that impact the I/O subsystem

41

SQL Server I/O, Forwarded Record, & Full
Scan Graph

42

Locks Object
One of the most important objects
Number of Deadlocks/sec critical
SQL Profiler can provide information about how
deadlock was created
Lock Timeouts/sec also critical

• # of lock requests that exceed maximum specified wait time

• Monitors each type of lock

43

Lock Types/Instances
Item Description

Database Entire database

Extent Contiguous group of 8 data pages or index pages

Key Row lock within index

Page 8-kilobyte (KB) data page or index page

RID Row ID. Used to lock single row within table

Table Entire table, including all data & indices

44

Lock Timeouts Graph

45

Other Lock Counters
Average Wait Time (ms)

• Measures average time each lock request was forced to wait
Useful to sum these to prevent averages from disguising
problems

• Calculate percentage of interval spent waiting
Lock Waits/sec

• Records how often lock requests waited
Trace duration filter does not apply to lock timeouts

46

Total Lock Wait Times

47

Lock Escalations
Row, key, or page locks automatically escalated to coarser
table locks as appropriate

• Single table lock acquired

• Many lower level locks released

Recorded in Table Lock Escalations/sec
Lock Owner Blocks Allocated and Lock Blocks Allocated
can be used to validate that applications hold too many
locks for too long

48

Table Lock Escalations

49

Lock Block & Lock Block Owners Graph

50

Latches
Latches

• Lightweight, short-term synchronization objects

• Protect action that need not need be locked for life of
transaction

51

Latch Object Counters
Counters

• Average Latch Wait Time (ms)

• Latch Waits/sec

• Total Latch Wait Time (ms)

52

Avg. Latch Wait Time (ms) Counter
Large values, e.g., greater than one second

• Indicate large number of physical I/Os or long I/O times

• Check following counters
- Page Reads/sec and Page Writes/sec

- System PhysicalDisk object, especially Avg. Disk Sec/Transfer

• Often coincide with low buffer cache hit ratios

53

% Disk Times & Queue Lengths
% Disk Times useless because they are simply
restatements of queue lengths using percent format
Perfmon constrains these to 100%
Queue lengths can no longer be interpreted as most
Windows performance books suggest, i.e., disk is in trouble
when queue length > 2
Queue lengths of 14 or more are common, even on well-
performing I/O subsystems

54

Physical I/O Measurements
Only I/O time is measured directly
Disk driver provides I/O times to Windows
Due to driver’s location in I/O path

• I/O time = service time + queue time

May not be possible to improve large service
times due to physical or financial constraints

55

Large SQL Server I/Os
Beginning with Service Pack 3, SQL Server can generate
very large I/Os, e.g., larger than 65,535 bytes
131,070 byte and larger I/Os have been observed (see
Example #3)
HBAs can be saturated fairly quickly under these
conditions
I/O service times can cause I/O times to be high even if
queuing does not occur

56

I/O Time Calculations
Important to know whether queuing is causing
large I/O times
Use Little’s Law to compute missing statistics

57

Little’s Law

N = X * R
• N => average # customers at a service center

• X => program completion rate

• R => average elapsed time

58

Using Little’s Law to Compute Missing I/O-
Related Times

All calculations use PhysicalDisk counters
Disk Utilization = 100 - % Idle Time
Disk service time = Disk Utilization / Disk
Transfers/sec
Disk queue time = Avg. Disk sec/Transfer - Disk
service time

59

RAID Example Calculations #1
Disk Utilization = 36.57%
Disk Transfers/sec = 0.65
Avg. Disk sec/Transfer = 2.0095
Disk service time = .3657 / 0.65 = 0.563 seconds
or 563 milliseconds
Disk queue time = 2.0095 – 0.563 = 1.447 seconds
or 1,447 milliseconds
Bytes/Transfer = 1,307

60

RAID Example Calculations #2
Disk Utilization = 77.67%
Disk Transfers/sec = 30.89
Avg. Disk sec/Transfer = 2.4424
Disk service time = .7767 / 30.89 = 0.025 seconds
or 25 milliseconds
Disk queue time = 2.4424 – 0.025 = 2.4174
seconds or 2,4174 milliseconds
Bytes/Transfer = 22,437

61

RAID Example 1 vs. 2
I/O times are not that far apart despite being
outrageously high
Queuing being encountered for both disks
Low I/O rate of Disk #1 appears to contribute to
high service times

• 1,307 bytes should not require 563 ms

62

RAID Example 1 vs. 2
Disk #2 is doing much more work

• Utilization is double
• I/O size is 17 times larger
• Service time is much more reasonable @ 25 ms

Problems began when faster processor complex
attached
Solution was to reconfigure EMC drives

63

RAID Example Calculations #3
Disk Utilization = 99.59%
Disk Transfers/sec = 58.2
Avg. Disk sec/Transfer = 0.7678
Disk service time = 0.9959 / 58.2 = 0.0171 seconds
or 17.1 milliseconds
Disk queue time = 0.7678 – 0.0171 = 0.7507
seconds or 750.7 milliseconds
Bytes/Transfer = 168,536

64

RAID Example #3 Discussion
100% utilization is suspicious, but RAID may be
functioning well enough

• In this case, it obviously is not

17 ms service times are good considering
average I/O size
Queuing is the problem
Drives comprising disk were clearly saturated

65

RAID Example #3 Discussion
Another disk processed 143.7 I/Os per second @
7.8 ms per I/O
Queue time was 2.1 ms
Service time was 5.7 ms
28,786 Bytes/Transfer
When all disks were combined, HBA was at the
limit
Solution was to add drives and HBAs

66

SQL Statement Handling
Batch

• Group of SQL statements

• Possibly hundreds or thousands of lines

• Must be parsed and compiled into an optimized execution
plan

Compilation and parsing can be
• Quite resource intensive

• Time-consuming

67

SQL Statistics Object
Most important counters

• Batch Requests/sec

• SQL Compilations/sec

• SQL Re-Compilations/sec

Use with Cache Manager object Cache Hit Ratio
counter

68

Batch Requests/sec
Number of select, insert, and delete statements
Each of these statements triggers a batch event,
which causes counter to be incremented
Note: This includes each of these statement types
that are executed within a stored procedure

69

SQL Server Connection Affinity
Documented in Q299641
Batch Requests/sec can be compared with System Context
Switches/sec counter to highlight need for SQL Server
Connection Affinity
Network packet comparison with System Context
Switches/sec counter also useful
Processor % DPC Time counter can also be useful in this
endeavor

70

Connection Affinity Example
Batch requests/sec correspond almost exactly
with System Context Switches/sec
Network packet traffic also almost perfectly
matches System Context Switches/sec
Processor DPC activities correspond closely as
well

71

Batch Requests vs. Context Switching Graph

72

Network Card Packet Traffic & Context
Switches Graph

73

Processor Overview Graph

74

Stored Procedure Compilation
Allows batch to be parsed and compiled only
once (hopefully)
Execution plan cached & re-used unless

• Removed from cache

• Execution plan invalidated because of database changes

If stored procedure requested after removal or
invalidation, it is recompiled

75

Cache Manager Object
Monitors various execution-related entities and their re-use

• Prepared SQL plans

• Procedure plans

• Trigger plans

• Normalized trees

Used in SQL statement, stored procedure and trigger
compilation, optimization, and execution

76

Cache Hit Ratio
Most important
Should be 90% or higher
Lower values

• Indicate too many ad-hoc queries

• Often associated with higher values of
- SQL Compilations/sec (SQL Statistics object)

- SQL Re-Compilations/sec

77

Guidelines
SQL Compilations/sec should be less than 40% of
Batch Requests/sec
High compilation rates frequently

• Correspond with lower Cache Manager cache hit ratios

• Indicate lack of stored procedure usage

• Indicate possible memory shortage

78

General Statistics Object
Useful in capacity planning situations
Logins/sec
Logouts/sec
User Connections
Useful in calculating work per user or connection

79

Databases Object
Each database is a performance counter instance
Log and transaction counters most important

80

Log
Database journal
Used for recovery
Changes written here before database
Can dramatically hinder database performance if
placed on busy disk
Should be on own disk volume

• Minimizes disk head movement

81

Log Flush Wait Time Counter
Measures total time database commits waited for
log flushes
Obviously, should be small

82

Average Log Write Waiting Times Graph

83

Potentially Confusing Log Counters
Log Flushes/sec measures number of log buffers
flushed to disk
Log Flush Waits/sec measures number of flushes
that had to wait

• Seems like an ideal number

Waits should be subset of total?
• Unfortunately, only in some cases

84

Recovery Models
Full Recovery

• Every database change logged
• Recover to last complete transaction

Bulk-logged
• Bulk operations minimally logged
• Recover to end of transaction log backup

Simple
• Recover to last database backup

Waits a subset of Total only for Simple model, which is
used least in production

85

Other Database Counters
Transactions/sec counter indicates which
databases updated most frequently
Particularly important because all Tempdb
transactions are monitored

86

Tempdb
Contains all temporary disk tables and
workspaces
Overuse can significantly hinder scalability
Can become major bottleneck
Use creatively designed queries to reduce
Tempdb activity

87

Table Variables
More efficient than pure tables
Unfortunately, still use Tempdb as other temporary tables
do
Obviously, spreading Tempdb across several physical
disks helps performance
Not so obviously, increasing number of physical Tempdb
files can reduce file access bottleneck, especially if Tempdb
hit very hard

88

Database Transaction Volumes Graph

89

Other Database Counters
Bulk Copy Throughput/sec

• Useful for monitoring efficiency and frequency of flat file loads into
database tables

Bulk copies/inserts can easily cause table escalation and
locking
Extremely efficient method for mass data loads
Should be infrequent during online day

90

Statistics
Computed for tables and indices
Enables query optimization
Can be expensive to create or update depending upon
sample size and frequency
May want to update these manually during off-peak times
instead of using automatic defaults
DBCC Logical Scan Bytes/sec useful for detecting when
statistics recalculated

91

Statistics
Set on by default in Tempdb
Application Sentinel SQL Optimizer detects this
Various options can be used to control impact of statistics
update or recreation

• FULLSCAN

• SAMPLE <n> PERCENT or ROWS

• RESAMPLE

• ALL or COLUMNS or INDEX

92

Database Size Counters
Log File(s) Size (KB)
Data File(s) Size (KB)
Log File(s) Used Size (KB)
Percent Log Used
Log Growths
Log Truncations
Log Shrinks

93

Database Size Counters
Useful for determining

• Volatility of log files

• Frequency of database and log expansion

• Overall sizes of databases and their logs

Minimize frequency of database and log
expansions

94

SQL Profiler
Bad reputation as a resource hog and performance killer
need not be deserved
Excessive resource consumption caused by

• Requesting entities that are changed constantly, e.g., locks and
scans

• Not using duration filter

• Requesting too many entities

Updating GUI on monitored machine

95

Events
Entities that are monitored
Careful use of templates can greatly reduce
resource consumption
Unfortunately, duration filter does not control
Lock:Timeout event logging

• Most records returned will be zero duration

Lock:Deadlock and Lock:Deadlock Timeout still
valuable events

96

Starting Events
Following events usually unnecessary because
start time can be calculated from ending records
using duration

• Stored Procedures event class
- SP:Starting, SP:StmtStarting, RPC:Starting

• T-SQL event class
- SQL:BatchStarting, SQL:StmtStarting

97

Other Events
Performance events

• Potentially very useful

• Execution Plan, Show Plan All, Show Plan Statistics, and Show
Plan Text difficult to decipher

Errors and Warnings events
• Extremely useful for highlighting inefficient sorts, missing statistics,

inefficient joins

• Low overhead

98

Warnings Summary

Database ID Object ID Event Name Event SubClass Name Integer Data Count

1 Sort Warnings Single pass 354

6 Sort Warnings Single pass 9,006

6 Sort Warnings Multiple pass 1,323

6 3 Hash Warning Hash recursion 0 540

6 3 Hash Warning Hash recursion 1 6

6 5 Hash Warning Hash recursion 0 219

6 7 Hash Warning Hash recursion 0 1,062

6 11 Hash Warning Hash recursion 0 27,477

8 Sort Warnings Single pass 153

99

sp_trace Instead of Profiler
Most efficient to use sp_trace commands to
capture trace information because no GUI
involved
Better than using remote Profiler because
session does not restart after network
interruption

100

sp_trace Commands
sp_trace_create defines a trace, but does not start it
sp_trace_setevent “adds or removes an event or event
column to a trace”
sp_trace_setfilter “applies a filter to a trace”
sp_trace_setstatus “modifies the current state of the
specified trace,” e.g., starts or stops trace

101

sp_trace
Can be used to “sample” trace data instead of
continuously capturing data

• Collect for a few minutes and then stop

• Restart collection at some future point

Useful on high-volume systems where any tracing
could be noticed
Job can be set up to implement this

102

Using SQL Server to Analyze Traces
Traces can be imported easily into a SQL Server database
using

• T-SQL commands

• SQL Profiler

Stored Procedures can be used to
• Summarize data

• Replace numeric IDs with meaningful text

• Locate offending queries

• Join trace data with other performance data

103

Conclusions
Many performance counters available with SQL
Server
Several have useful descriptions associated with
them, but many do not
Most objects and counters pertain to SQL Server
as an entity without regard to a specific user,
query, or database

104

Conclusions
When complex applications access multiple
databases under one SQL Server instance,
PerfMon counters alone do not provide enough
information
Extremely important to combine SQL Server
performance information with system
performance information, especially processor,
memory, and I/O

105

Conclusions
SQL Query and SQL Profiler both provide
extremely useful insights into how specific
databases, queries, transactions, batches, and
stored procedures perform

106

Conclusions
Many analysts believe that SQL Profiler cannot be run
against a production system without severely damaging
performance
This need not be true!
Lightweight Profiler templates or trace T-SQL routines can
be used to gather very specific and inexpensive information
regularly

107

Conclusions
SQL Trace output can be imported into a SQL
Server database for fast and easy analysis
Once specific queries or stored procedures have
been identified as offenders, additional data can
be gathered for just those entities

108

References
Kalen Delaney, Inside Microsoft SQL Server 2000
Mark Friedman and Odysseas Pentakalos,
Windows 2000 Performance Guide
Microsoft SQL Server 2000 Books Online

109

References
Edward Whalen, Marcilina Garcia, Steve DeLuca,
and Dean Thompson, Microsoft SQL Server 2000
Performance Tuning

	SQL Server Performance Assessment and Optimization Techniques
	Emphasis of Presentation
	Overview
	Overview
	PerfMon Counter Hierarchy
	Object Hierarchy Examples
	SQL Server Objects
	SQL Server Objects
	SQL Server Object List
	SQL Server Object List
	Buffer Manager and Buffer Partition Objects
	Buffer Cache Hit Ratio
	Detecting Insufficient SQL Memory
	SQL Server Only App and Single Instance
	AWE and SQL Server Using All Memory Automatically
	AWE and SQL Server Using All Memory Automatically
	AWE User Experiences #1
	AWE User Experiences #2
	Available & Cache Memory
	SQL One of Many Apps
	Increasing SQL Memory
	Free Pages Counter
	FreeList Stalls Counter
	FreeList Stalls Graph
	Stolen Pages Counter
	Database I/O Counters
	I/O Activity Graph
	Page Lookups/sec Counter
	Buffer Cache Hit Ratio - Revisited
	Page Lookups Graph
	Memory Manager Object
	Access Methods Object
	Forwarded Records
	Forwarded Records
	Detecting Forwarded Records
	Forwarded Records/sec
	Forwarded Records Graph
	Full Scans
	Access Method Graph
	I/O Activity vs. Access Methods
	SQL Server I/O, Forwarded Record, & Full Scan Graph
	Locks Object
	Lock Types/Instances
	Lock Timeouts Graph
	Other Lock Counters
	Total Lock Wait Times
	Lock Escalations
	Table Lock Escalations
	Lock Block & Lock Block Owners Graph
	Latches
	Latch Object Counters
	Avg. Latch Wait Time (ms) Counter
	% Disk Times & Queue Lengths
	Physical I/O Measurements
	Large SQL Server I/Os
	I/O Time Calculations
	Little’s Law
	Using Little’s Law to Compute Missing I/O-Related Times
	RAID Example Calculations #1
	RAID Example Calculations #2
	RAID Example 1 vs. 2
	RAID Example 1 vs. 2
	RAID Example Calculations #3
	RAID Example #3 Discussion
	RAID Example #3 Discussion
	SQL Statement Handling
	SQL Statistics Object
	Batch Requests/sec
	SQL Server Connection Affinity
	Connection Affinity Example
	Batch Requests vs. Context Switching Graph
	Network Card Packet Traffic & Context Switches Graph
	Processor Overview Graph
	Stored Procedure Compilation
	Cache Manager Object
	Cache Hit Ratio
	Guidelines
	General Statistics Object
	Databases Object
	Log
	Log Flush Wait Time Counter
	Average Log Write Waiting Times Graph
	Potentially Confusing Log Counters
	Recovery Models
	Other Database Counters
	Tempdb
	Table Variables
	Database Transaction Volumes Graph
	Other Database Counters
	Statistics
	Statistics
	Database Size Counters
	Database Size Counters
	SQL Profiler
	Events
	Starting Events
	Other Events
	Warnings Summary
	sp_trace Instead of Profiler
	sp_trace Commands
	sp_trace
	Using SQL Server to Analyze Traces
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	References
	References

